NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Thermal Modelling of Various Thermal Barrier Coatings in a High Flux Rocket EngineA thermal model was developed to predict the thermal response of coated and uncoated tubes tested in a H2/O2 rocket engine. Temperatures were predicted for traditional APS ZrO2-Y2O3 thermal barrier coatings, as well as APS and LPPS ZrO2-Y2O3/NiCrAlY cermet coatings. Good agreement was observed between predicted and measured metal temperatures at locations near the tube surface or at the inner tube wall. The thermal model was also used to quantitatively examine the effect of various coating system parameters on the temperatures in the substrate and coating. Accordingly, the effect of the presence a metallic bond coat and the effect of radiation from the surface of the ceramic layer were examined. In addition, the effect of a variation in the values of the thermal conductivity of the ceramic layer was also investigated. It was shown that a variation in the thermal conductivity of the ceramic layer, on the order of that reported in the literature for plasma sprayed ZrO2-Y2O3 coatings, can result in temperature differences in the substrate greater than 100 C, a much greater effect than that due to the presence of a bond coat or radiation from the ceramic layer. The thermal model was also used to predict the thermal response of a coated rod in order to quantify the difference in the metal temperatures between the two substrate geometries in order to explain the previously-observed increased life of coatings on rods over that on tubes. It was shown that for the short duration testing in the rocket engine, the temperature in a tube could exceed that in a rod by more than 100 C. Lastly, a two-dimensional model was developed to evaluate the effect of tangential heat transfer around the tube and its impact on reducing the stagnation point temperature. It was also shown that tangential heat transfer does not significantly reduce the stagnation point temperature, thus allowing application of a simpler, one-dimensional model for comparing measured and predicted stagnation point temperatures.
Document ID
20000004783
Acquisition Source
Legacy CDMS
Document Type
Preprint (Draft being sent to journal)
Authors
Nesbitt, James A.
(NASA Lewis Research Center Cleveland, OH United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 1998
Subject Category
Spacecraft Propulsion And Power
Funding Number(s)
PROJECT: RTOP 523-21-13
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available