NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Probing AGN with Masers and X-Rays-SAX ProposalsWe have made BeppoSAX observations of the Seyfert 2/1.9 galaxy ESO103-G35, which contains a nuclear maser source and is known to be heavily absorbed in the X-rays. Analysis of the X-ray spectra observed by SAX in October 1996 and 1997 yields an energy index = 0.74 +/- 0.07, typical of Seyfert galaxies and consistent with earlier observations of this source. The strong, soft X-ray absorption has a column density, N_H of (1.79 +/- 0.09)E23 cmE-02, again consistent with earlier results. The best fitting spectrum is that of a power law with a high energy cutoff at 29 +/- 10 keV, a cold (E=6.3 +/- 0.1 keV, rest frame), marginally resolved (sigma = 0.35 +/- 0.14 keV, FWHM approximately (31 +/- 12)E03 km/s) FeKalpha line with EW 290 +100 -80 eV (1996) and a mildly ionized Fe K-edge at 7.37 +0.15 -0.21 keV, tau 0.24 +0.06 -0.09. The Fe Kalpha line and cold absorption are consistent with origin in a accretion disk/torus through which our line-of-sight passes at a radial distance of approximately 0.01 pc. The Fe K-edge is mildly ionized suggesting the presence of ionized gas probably in the inner accretion disk, close to the central source or in a separate warm absorber. The data quality is too low to distinguish between these possibilities but the edge-on geometry implied by the water maser emission favors the former. Comparison with earlier observations of ESO103-G35 shows little/no change in spectral parameters while the flux changes by factors of a few on timescales of a few months. The 2-10 keV flux decreased by a factor of approximately 2.7 between Oct 1996 and Oct 1997 with no detectable change in the count rate greater than 20 keV (i.e. the PDS data). Spectral fits to the combined datasets indicate either a significant hardening of the spectrum (energy index approximately 0.5) or an approximate constant or delayed response reflection component. The high energy cutoff (29 +/- 10 keV) is lower than the typical approximately 300 keV values seen in Seyfert galaxies. A significant subset of similar sources would affect current models of the AGN contribution to the cosmic X-ray background (CXRB) which generally assume a high energy cutoff of approximately 300 keV.
Document ID
20010097740
Acquisition Source
Goddard Space Flight Center
Document Type
Contractor or Grantee Report
Authors
Wilkes, Belinda J.
(Harvard-Smithsonian Center for Astrophysics Cambridge, MA United States)
White, Nicholas
Date Acquired
September 7, 2013
Publication Date
September 1, 2001
Subject Category
Astronomy
Funding Number(s)
CONTRACT_GRANT: NAG5-7064
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available