NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
New Type of the Interface Evolution in the Richtmyer-Meshkov InstabilityWe performed systematic theoretical and numerical studies of the nonlinear large-scale coherent dynamics in the Richtmyer-Meshkov instability for fluids with contrast densities. Our simulations modeled the interface dynamics for compressible and viscous uids. For a two-fluid system we observed that in the nonlinear regime of the instability the bubble velocity decays and its surface attens, and the attening is accompanied by slight oscillations. We found the theoretical solution for the system of conservation laws, describing the principal influence of the density ratio on the motion of the nonlinear bubble. The solution has no adjustable parameters, and shows that the attening of the bubble front is a distinct property universal for all values of the density ratio. This property follows from the fact that the RM bubbles decelerate. The theoretical and numerical results validate each other, describe the new type of the bubble front evolution in RMI, and identify the bubble curvature as important and sensitive diagnostic parameter.
Document ID
20040027954
Acquisition Source
Headquarters
Document Type
Other
Authors
Abarzhi, S. I.
(Stanford Univ. Stanford, CA, United States)
Herrmann, M.
(Stanford Univ. Stanford, CA, United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Center for Turbulence Research Annual Research Briefs 2003
Subject Category
Fluid Mechanics And Thermodynamics
Funding Number(s)
CONTRACT_GRANT: NCC2-1371
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available