NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Large-Eddy Simulation of Conductive Flows at Low Magnetic Reynolds NumberIn this paper we study the LES method with dynamic procedure in the context of conductive flows subject to an applied external magnetic field at low magnetic Reynolds number R(sub m). These kind of flows are encountered in many industrial applications. For example, in the steel industry, applied magnetic fields can be used to damp turbulence in the casting process. In nuclear fusion devices (Tokamaks), liquid-lithium flows are used as coolant blankets and interact with the surrounding magnetic field that drives and confines the fusion plasma. Also, in experimental facilities investigating the dynamo effect, the flow consists of liquid-sodium for which the Prandtl number and, as a consequence, the magnetic Reynolds number is low. Our attention is focused here on the case of homogeneous (initially isotropic) decaying turbulence. The numerical simulations performed mimic the thought experiment described in Moffatt in which an initially homogeneous isotropic conductive flow is suddenly subjected to an applied magnetic field and freely decays without any forcing. Note that this flow was first studied numerically by Schumann. It is well known that in that case, extra damping of turbulence occurs due to the Joule effect and that the flow tends to become progressively independent of the coordinate along the direction of the magnetic field. Our comparison of filtered direct numerical simulation (DNS) predictions and LES predictions show that the dynamic Smagorinsky model enables one to capture successfully the flow with LES, and that it automatically incorporates the effect of the magnetic field on the turbulence. Our paper is organized as follows. In the next section we summarize the LES approach in the case of MHD turbulence at low R(sub m) and recall the definition of the dynamic Smagorinsky model. In Sec. 3 we describe the parameters of the numerical experiments performed and the code used. Section 4 is devoted to the comparison of filtered DNS results and LES results. Conclusions are presented in Sec. 5.
Document ID
20040031626
Acquisition Source
Headquarters
Document Type
Other
Authors
Knaepen, B.
(Stanford Univ. Stanford, CA, United States)
Moin, P.
(Stanford Univ. Stanford, CA, United States)
Date Acquired
September 7, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Center for Turbulence Research Annual Research Briefs 2003
Subject Category
Fluid Mechanics And Thermodynamics
Funding Number(s)
CONTRACT_GRANT: NCC2-1371
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available