NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
NASA Glenn/AADC Collaboration Optimized Erosion Coatings for Inlet Guide VanesThere is a need for lightweight, durable materials and structures to reduce the weight of propulsion systems. Polymer matrix composites (PMC's) are promising materials for aerospace applications because of their high strength-to-weight ratio relative to metals. Unfortunately, they are limited to applications where they are not exposed to hightemperature oxidizing atmospheres and/or particulates from ingested air. This is because oxidation and erosion occur on the surface, leading to weight loss, nodulation, and/or cracking on the surface, and a consequent decline of mechanical properties over time. Although prior research has shown that oxidation can be slowed when metallic or ceramic coatings are applied onto PMC's, there remains a need for erosion-resistant coatings that protect PMC's from high-velocity particulates in the engine flow path. These erosionresistant coatings could extend the life of polymer composites. Polymer composites are heavily damaged without an erosion-resistant coating because they are not as hard as metallic engine structures. The effectiveness and life of the coatings depends on their inherent properties as well as on the interaction between the coating and the PMC. Since polymers, in general, have high thermal expansion coefficients in comparison to metals and ceramics, failure of the coatings often occurs at this interface. The objective of this research is to develop strategies to improve this interface and tailor overlays for erosion resistance. The bondcoat, which was developed at the NASA Glenn Research Center, is composed of zinc blended with polyimides to improve the compatibility between the PMC and the overlay material. Initial coating trials at AADC produced vanes that had poor bonding between the overlay and bondcoats. Subsequently, Glenn successfully demonstrated that high-quality plasma-sprayed erosion coating systems could be applied to these guide vanes. Inlet guide vanes from AE 3007 engines fiber composites were coated using a coating system composed of a bondcoat and a hard topcoat. Optimization of the plasma spray process has led to plans for future erosion testing in gas turbine engine environments.
Document ID
20050201883
Acquisition Source
Glenn Research Center
Document Type
Other
Authors
Sutter, James K.
(NASA Glenn Research Center Cleveland, OH, United States)
Leissler, George
(NASA Glenn Research Center Cleveland, OH, United States)
Horan, Richard
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
September 7, 2013
Publication Date
March 1, 2002
Publication Information
Publication: Research and Technology 2001
Subject Category
Composite Materials
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available