NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Mechanisms of Rotating Instability in Axial Compressors InvestigatedRotating instability is a phenomenon that occurs in the tip flow region of axial compressor stages during stable operation. It can be observed in highly staggered rotors with significant tip clearance and is strongest at high-load operating points where the characteristic levels off. In this condition, the single-stage fan under investigation radiates an audible, whistling tone, and wall pressure spectra in the vicinity of the rotor disk exhibit nonrotational components. The graph shows the spectrum of static pressure at a point on the endwall near the leading edge. A hump appears at roughly half of the blade passing frequency (BPF) and is characteristic of rotating instability. A computational model was developed at the NASA Glenn Research Center to investigate the mechanism behind this phenomenon. A three-dimensional steady Navier-Stokes code that has been successfully tested for a wide range of turbomachinery flows was modified to execute a time-accurate simulation of the full annulus of the compressor. At the inlet of the computational domain, the total pressure, total temperature, and two velocity components are specified. Since no unsteady measurements of static pressure or other flow variables were available downstream of the rotor, circumferentially averaged static pressure was specified on the shroud at the outlet of the computational domain. A three-dimensional view of the vortex from the numerical model is shown. Particle traces released near the leading edge tip have rolled up to illustrate the tip clearance vortex. Flow near the trailing edge is pushed forward by the axially reversed flow. It then interacts with the tip clearance flow and the incoming flow and results in the rotating instability vortex, the core of which is illustrated by total pressure shading on planes located successively downstream. The rotating instability vortex is formed periodically midway between the blades and moves toward the pressure side of the passage. The unsteady behavior of this vortex structure is the main mechanism of the rotating instability is shown. The numerical model can be used to detect any possible occurrence of rotating instability when the tip clearance increases during engine service.
Document ID
20050214820
Acquisition Source
Glenn Research Center
Document Type
Other
Authors
Hah, Chunill
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
September 7, 2013
Publication Date
March 1, 2003
Publication Information
Publication: Research and Technology 2002
Subject Category
Fluid Mechanics And Thermodynamics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available