NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
24-Way Radial Power Combiner/Divider for 31 to 36 GHzThe figure shows a prototype radial power-combining waveguide structure, capable of operation at frequencies from 31 to 36 GHz, that features an unusually large number (N = 24) of combining (input) ports. The combination of wide-band operation and large N is achieved by incorporating several enhancements over a basic radial power-combiner design. In addition, the structure can be operated as a power divider by reversing the roles of the input and output ports. In this structure, full-height waveguides at the combining ports are matched in impedance to reduced-height radial waveguides inside the combiner base. This match is effected by impedance-transforming stepped waveguide sections. This matching scheme is essential to achievement of large N because N is limited by the height of the waveguides in the base. Power is coupled from the 24 reduced- height radial waveguides into the TE01 mode of a circular waveguide in the base with the help of a matching post at the bottom of the base. ( TE signifies transverse electric, the first subscript is the azimuthal mode number, and the second subscript is the radial mode number.) More specifically, the matching post matches the reflections from the walls of the 24 reduced-height waveguides and enables the base design to exceed the bandwidth requirement. After propagating along the circular waveguide, the combined power is coupled, via a mode transducer, to a rectangular waveguide output port. The mode transducer is divided into three sections, each sized and shaped as part of an overall design to satisfy the mode-conversion and output-coupling requirements while enabling the circular waveguide to be wide enough for combining the 24 inputs over the frequency range of 31 to 36 GHz. During the design process, it was found that two different rectangular waveguide outputs could be accommodated through modification of only the first section of the mode converter, thereby enabling operation in multiple frequency ranges.
Document ID
20090017553
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Epp, Larry
(California Inst. of Tech. Pasadena, CA, United States)
Hoppe, Daniel
(California Inst. of Tech. Pasadena, CA, United States)
Khan, Abdur
(California Inst. of Tech. Pasadena, CA, United States)
Kelley, Daniel
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
May 1, 2008
Publication Information
Publication: NASA Tech Briefs, May 2008
Subject Category
Technology Utilization And Surface Transportation
Report/Patent Number
NPO-41511
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available