NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Focal-Plane Arrays of Quantum-Dot Infrared PhotodetectorsFocal-plane arrays of semiconductor quantum-dot infrared photodetectors (QDIPs) are being developed as superior alternatives to prior infrared imagers, including imagers based on HgCdTe devices and, especially, those based on quantum-well infrared photodetectors (QWIPs). HgCdTe devices and arrays thereof are difficult to fabricate and operate, and they exhibit large nonunformities and high 1/f (where f signifies frequency) noise. QWIPs are easier to fabricate and operate, can be made nearly uniform, and exhibit lower 1/f noise, but they exhibit larger dark currents, and their quantization only along the growth direction prevents them from absorbing photons at normal incidence, thereby limiting their quantum efficiencies. Like QWIPs, QDIPs offer the advantages of greater ease of operation, greater uniformity, and lower 1/f noise, but without the disadvantages: QDIPs exhibit lower dark currents, and quantum efficiencies of QDIPs are greater because the three-dimensional quantization of QDIPs is favorable to the absorption of photons at normal or oblique incidence. Moreover, QDIPs can be operated at higher temperatures (around 200 K) than are required for operation of QWIPs. The main problem in the development of QDIP imagers is to fabricate quantum dots with the requisite uniformity of size and spacing. A promising approach to be tested soon involves the use of electron-beam lithography to define the locations and sizes of quantum dots. A photoresist-covered GaAs substrate would be exposed to the beam generated by an advanced, high-precision electron beam apparatus. The exposure pattern would consist of spots typically having a diameter of 4 nm and typically spaced 20 nm apart. The exposed photoresist would be developed by either a high-contrast or a low-contrast method. In the high-contrast method, the spots would be etched in such a way as to form steep-wall holes all the way down to the substrate. The holes would be wider than the electron beam spots perhaps as wide as 15 to 20 nm, but may be sufficient to control the growth of the quantum dots. In the low-contrast method, the resist would be etched in such a way as to form dimples, the shapes of which would mimic the electron-beam density profile. Then by use of a transfer etching process that etches the substrate faster than it etches the resist, either the pattern of holes or a pattern comprising the narrow, lowest portions of the dimples would be imparted to the substrate. Having been thus patterned, the substrate would be cleaned. The resulting holes or dimples in the substrate would serve as nucleation sites for the growth of quantum dots of controlled size in the following steps. The substrate would be cleaned, then placed in a molecular-beam-epitaxy (MBE) chamber, where native oxide would be thermally desorbed and the quantum dots would be grown.
Document ID
20100010913
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Gunapala, Sarath
(California Inst. of Tech. Pasadena, CA, United States)
Wilson, Daniel
(California Inst. of Tech. Pasadena, CA, United States)
Hill, Cory
(California Inst. of Tech. Pasadena, CA, United States)
Liu, John
(California Inst. of Tech. Pasadena, CA, United States)
Bandara, Sumith
(California Inst. of Tech. Pasadena, CA, United States)
Ting, David
(California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
September 1, 2007
Publication Information
Publication: NASA Tech Briefs, September 2007
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-41236
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available