NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Blended Buffet-Load-Alleviation System for Fighter AirplaneThe capability of modern fighter airplanes to sustain flight at high angles of attack and/or moderate angles of sideslip often results in immersion of part of such an airplane in unsteady, separated, vortical flow emanating from its forebody or wings. The flows from these surfaces become turbulent and separated during flight under these conditions. These flows contain significant levels of energy over a frequency band coincident with that of low-order structural vibration modes of wings, fins, and control surfaces. The unsteady pressures applied to these lifting surfaces as a result of the turbulent flows are commonly denoted buffet loads, and the resulting vibrations of the affected structures are known as buffeting. Prolonged exposure to buffet loads has resulted in fatigue of structures on several airplanes. Damage to airplanes caused by buffeting has led to redesigns of airplane structures and increased support costs for the United States Air Force and Navy as well as the armed forces of other countries. Time spent inspecting, repairing, and replacing structures adversely affects availability of aircraft for missions. A blend of rudder-control and piezoelectric- actuator engineering concepts was selected as a basis for the design of a vertical-tail buffet-load-alleviation system for the F/A-18 airplane. In this system, the rudder actuator is used to control the response of the first tail vibrational mode (bending at a frequency near 15 Hz), while directional patch piezoelectric actuators are used to control the second tail vibrational mode (tip torsion at a frequency near 45 Hz). This blend of two types of actuator utilizes the most effective features of each. An analytical model of the aeroservoelastic behavior of the airplane equipped with this system was validated by good agreement with measured results from a full-scale ground test, flight-test measurement of buffet response, and an in-flight commanded rudder frequency sweep. The overall performance of the system was found to be characterized by reductions, ranging from 70 to 30 percent, in vertical-tail buffeting under buffet loads ranging from moderate to severe. These reductions were accomplished with a maximum commanded rudder angle of +/-2deg at 15 Hz and about 10 lb (.4.5 kg) of piezoelectric actuators attached to the vertical tail skin and operating at a peak power level of 2 kW. By meeting the design objective, this system would extend the vertical-tail fatigue life beyond two aircraft lifetimes. This system is also adaptable to other aircraft surfaces and other aircraft
Document ID
20110014728
Acquisition Source
Langley Research Center
Document Type
Other - NASA Tech Brief
Authors
Moses, Robert W.
(NASA Langley Research Center Hampton, VA, United States)
Date Acquired
August 25, 2013
Publication Date
February 1, 2005
Publication Information
Publication: NASA Tech Briefs, February 2005
Subject Category
Man/System Technology And Life Support
Report/Patent Number
LAR-16375-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available