NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Observability and Estimation of Distributed Space Systems via Local Information-Exchange NetworksSpacecraft formation flying involves the coordination of states among multiple spacecraft through relative sensing, inter-spacecraft communication, and control. Most existing formation-flying estimation algorithms can only be supported via highly centralized, all-to-all, static relative sensing. New algorithms are proposed that are scalable, modular, and robust to variations in the topology and link characteristics of the formation exchange network. These distributed algorithms rely on a local information exchange network, relaxing the assumptions on existing algorithms. Distributed space systems rely on a signal transmission network among multiple spacecraft for their operation. Control and coordination among multiple spacecraft in a formation is facilitated via a network of relative sensing and interspacecraft communications. Guidance, navigation, and control rely on the sensing network. This network becomes more complex the more spacecraft are added, or as mission requirements become more complex. The observability of a formation state was observed by a set of local observations from a particular node in the formation. Formation observability can be parameterized in terms of the matrices appearing in the formation dynamics and observation matrices. An agreement protocol was used as a mechanism for observing formation states from local measurements. An agreement protocol is essentially an unforced dynamic system whose trajectory is governed by the interconnection geometry and initial condition of each node, with a goal of reaching a common value of interest. The observability of the interconnected system depends on the geometry of the network, as well as the position of the observer relative to the topology. For the first time, critical GN&C (guidance, navigation, and control estimation) subsystems are synthesized by bringing the contribution of the spacecraft information-exchange network to the forefront of algorithmic analysis and design. The result is a formation estimation algorithm that is modular and robust to variations in the topology and link properties of the underlying formation network.
Document ID
20120000762
Acquisition Source
Jet Propulsion Laboratory
Document Type
Other - NASA Tech Brief
Authors
Fathpour, Nanaz
(California Inst. of Tech. Pasadena, CA, United States)
Hadaegh, Fred Y.
(California Inst. of Tech. Pasadena, CA, United States)
Mesbahi, Mehran
(Washington Univ. WA, United States)
Rahmani, Amirreza
(Washington Univ. WA, United States)
Date Acquired
August 25, 2013
Publication Date
May 1, 2011
Publication Information
Publication: NASA Tech Brief, May 2011
Subject Category
Man/System Technology And Life Support
Report/Patent Number
NPO-46812
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available