NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Assessment of Antarctic Ice-Sheet Mass Balance Estimates: 1992 - 2009Published mass balance estimates for the Antarctic Ice Sheet (AIS) lie between approximately +50 to -250 Gt/year for 1992 to 2009, which span a range equivalent to 15% of the annual mass input and 0.8 mm/year Sea Level Equivalent (SLE). Two estimates from radar-altimeter measurements of elevation change by European Remote-sensing Satellites (ERS) (+28 and -31 Gt/year) lie in the upper part, whereas estimates from the Input-minus-Output Method (IOM) and the Gravity Recovery and Climate Experiment (GRACE) lie in the lower part (-40 to -246 Gt/year). We compare the various estimates, discuss the methodology used, and critically assess the results. Although recent reports of large and accelerating rates of mass loss from GRACE=based studies cite agreement with IOM results, our evaluation does not support that conclusion. We find that the extrapolation used in the published IOM estimates for the 15 % of the periphery for which discharge velocities are not observed gives twice the rate of discharge per unit of associated ice-sheet area than the 85% faster-moving parts. Our calculations show that the published extrapolation overestimates the ice discharge by 282 Gt/yr compared to our assumption that the slower moving areas have 70% as much discharge per area as the faster moving parts. Also, published data on the time-series of discharge velocities and accumulation/precipitation do not support mass output increases or input decreases with time, respectively. Our modified IOM estimate, using the 70% discharge assumption and substituting input from a field-data compilation for input from an atmospheric model over 6% of area, gives a loss of only 13 Gt/year (versus 136 Gt/year) for the period around 2000. Two ERS-based estimates, our modified IOM, and a GRACE-based estimate for observations within 1992 to 2005 lie in a narrowed range of +27 to - 40 Gt/year, which is about 3% of the annual mass input and only 0.2 mm/year SLE. Our preferred estimate for 1992-2001 is - 47 Gt/year for West Antarctica, + 16 Gt/year for East Antarctica, and -31 Gt/year overall (+0.1 mm/year SLE), not including part of the Antarctic Peninsula (1.07 % of the AIS area)
Document ID
20120002070
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Zwally, H. Jay
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Giovinetto, Mario B.
(SGT, Inc. Greenbelt , MD, United States)
Date Acquired
August 25, 2013
Publication Date
December 5, 2011
Subject Category
Geophysics
Report/Patent Number
GSFC.CP.5737.2011
Meeting Information
Meeting: American Geophysial Union (AGU) 2011 Fall Meeting
Location: San Francisco, CA
Country: United States
Start Date: December 5, 2011
End Date: December 9, 2011
Sponsors: American Geophysical Union
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available