NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Sealing Materials for Use in Vacuum at High TemperaturesSealing materials that can be applied and left in place in vacuum over a wide range of temperatures (especially temperatures of a few thousand degrees Celsius) have been conceived and investigated for potential utility in repairing thermal-protection tiles on the space shuttles in orbit before returning to Earth. These materials are also adaptable to numerous terrestrial applications that involve vacuum processing and/or repair of structures that must withstand high temperatures. These materials can be formulated to have mechanical handling characteristics ranging from almost freely flowing liquid-like consistency through paste-like consistency to stiff puttylike consistency, and to retain these characteristics in vacuum until heated to high curing temperatures. A sealing material of this type can be formulated to be used in any of several different ways for example, to be impregnated into a high-temperature-fabric patch, impregnated into a high-temperature-fabric gasket for sealing a patch, applied under a patch, or applied alone in the manner of putty or wallboard compound. The sealing material must be formulated to be compatible with, and adhere to, the structural material(s) to be repaired. In general, the material consists of a vacuum-compatible liquid containing one or more dissolved compound(s) and/or mixed with suspended solid particles. Depending on the intended application, the liquid can be chosen to be of a compound that can remain in place in vacuum for a time long enough to be useful, and/or to evaporate or decompose in a controlled way to leave a useful solid residue behind. The evaporation rate is determined by proper choice of vapor pressure, application of heat, and/or application of ultraviolet light or other optical radiation. The liquid chosen for the original space shuttle application is a commercial silicone vacuum-pump oil.
Document ID
20120007646
Acquisition Source
Johnson Space Center
Document Type
Other - NASA Tech Brief
Authors
Pettit, Donald R.
(NASA Johnson Space Center Houston, TX, United States)
Camarda, Charles J.
(NASA Johnson Space Center Houston, TX, United States)
Lee Vaughn, Wallace
(NASA Langley Research Center Hampton, VA, United States)
Date Acquired
August 25, 2013
Publication Date
March 1, 2012
Publication Information
Publication: NASA Tech Briefs, March 2012
Subject Category
Man/System Technology And Life Support
Report/Patent Number
MSC-23959-1
Distribution Limits
Public
Copyright
Public Use Permitted.
No Preview Available