User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Latest Developments in Modeling and Characterization of Joining Metal Based Hybrid Materials

  • Open access
  • PDF
  • 3.10 M
  1. Ashby M.F., Bréchet Y.J.M., Designing hybrid materials, 10.1016/s1359-6454(03)00441-5
  2. Ashby, Materials Selection in Mechanical Design (2004)
  3. Clyne, An Introduction to Metal Matrix Composites (1995)
  4. Lloyd D. J., Particle reinforced aluminium and magnesium matrix composites, 10.1179/imr.1994.39.1.1
  5. Mortensen Andreas, Llorca Javier, Metal Matrix Composites, 10.1146/annurev-matsci-070909-104511
  6. Christman T., Needleman A., Suresh S., An experimental and numerical study of deformation in metal-ceramic composites, 10.1016/0001-6160(89)90339-8
  7. Sinnott Susan B, Dickey Elizabeth C, Ceramic/metal interface structures and their relationship to atomic- and meso-scale properties, 10.1016/j.mser.2003.09.001
  8. Spitalsky Zdenko, Tasis Dimitrios, Papagelis Konstantinos, Galiotis Costas, Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties, 10.1016/j.progpolymsci.2009.09.003
  9. Curtin William A., Sheldon Brian W., CNT-reinforced ceramics and metals, 10.1016/s1369-7021(04)00508-5
  10. Thostenson Erik T, Ren Zhifeng, Chou Tsu-Wei, Advances in the science and technology of carbon nanotubes and their composites: a review, 10.1016/s0266-3538(01)00094-x
  11. Bakshi S R, Lahiri D, Agarwal A, Carbon nanotube reinforced metal matrix composites - a review, 10.1179/095066009x12572530170543
  12. So Kang Pyo, Liu Xiaohui, Mori Hideki, Kushima Akihiro, Park Jong Gil, Kim Hyoung Seop, Ogata Shigenobu, Lee Young Hee, Li Ju, Ton-scale metal–carbon nanotube composite: The mechanism of strengthening while retaining tensile ductility, 10.1016/j.eml.2016.04.002
  13. J. F. Flumerfelt PhD Thesis 1998 154
  14. Song J., Kostka A., Veehmayer M., Raabe D., Hierarchical microstructure of explosive joints: Example of titanium to steel cladding, 10.1016/j.msea.2010.11.092
  15. Anderson Iver E., White Emma M.H., Dehoff Ryan, Feedstock powder processing research needs for additive manufacturing development, 10.1016/j.cossms.2018.01.002
  16. Misra A., Krug H., Deformation Behavior of Nanostructured Metallic Multilayers, 10.1002/1527-2648(200104)3:4<217::aid-adem217>3.0.co;2-5
  17. Tian Liang, Russell Alan, Riedemann Trevor, Mueller Soeren, Anderson Iver, A deformation-processed Al-matrix/Ca-nanofilamentary composite with low density, high strength, and high conductivity, 10.1016/j.msea.2017.03.010
  18. Allison John E., Cole Gerald S., Metal-matrix composites in the automotive industry: Opportunities and challenges, 10.1007/bf03223361
  19. J. F. Boylan W. J. Boyle K. M. Magrini S. J. Huter Google Patents 2004
  20. TAKEDA Nobuo, MINAKUCHI Shu, OKABE Yoji, Smart Composite Sandwich Structures for Future Aerospace Application -Damage Detection and Suppression-: a Review, 10.1299/jmmp.1.3
  21. H. Hanninen P. Aaltonen A. Brederholm U. Ehrnstén H. Gripenberg A. Toivonen J. Pitkanen I. Virkkunen 2006
  22. Markov Andrey, Guerboukha Hichem, Skorobogatiy Maksim, Hybrid metal wire–dielectric terahertz waveguides: challenges and opportunities [Invited], 10.1364/josab.31.002587
  23. Chen Wen, Liu Ze, Schroers Jan, Joining of bulk metallic glasses in air, 10.1016/j.actamat.2013.08.053
  24. Misra A., Demkowicz M. J., Zhang X., Hoagland R. G., The radiation damage tolerance of ultra-high strength nanolayered composites, 10.1007/s11837-007-0120-6
  25. Beyerlein I.J., Caro A., Demkowicz M.J., Mara N.A., Misra A., Uberuaga B.P., Radiation damage tolerant nanomaterials, 10.1016/j.mattod.2013.10.019
  26. Tian Liang, Russell Alan, Anderson Iver, A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal–metal composites, 10.1007/s10853-013-7982-5
  27. Russell A. M., Chumbley L. S., Tian Y., Deformation Processed Metal-Metal Composites, 10.1002/(sici)1527-2648(200002)2:1/2<11::aid-adem11>3.0.co;2-z
  28. Kaw, Mechanics of Composite Materials (2005)
  29. Beyerlein I.J., Demkowicz M.J., Misra A., Uberuaga B.P., Defect-interface interactions, 10.1016/j.pmatsci.2015.02.001
  30. Zou Lianfeng, Yang Chaoming, Lei Yinkai, Zakharov Dmitri, Wiezorek Jörg M. K., Su Dong, Yin Qiyue, Li Jonathan, Liu Zhenyu, Stach Eric A., Yang Judith C., Qi Liang, Wang Guofeng, Zhou Guangwen, Dislocation nucleation facilitated by atomic segregation, 10.1038/nmat5034
  31. Bevk J., Harbison James P., Bell Joseph L., Anomalous increase in strength ofinsituformed Cu‐Nb multifilamentary composites, 10.1063/1.324573
  32. Tian Liang, Kim Hyongjune, Anderson Iver, Russell Alan, The microstructure-strength relationship in a deformation processed Al–Ca composite, 10.1016/j.msea.2013.01.062
  33. International, Metal Handbook (1990)
  34. Shaw Austin, Tian Liang, Russell Alan, Tensile Properties of High-purity Ca Metal, 10.9734/bjast/2016/26293
  35. Tian Liang, Anderson Iver, Riedemann Trevor, Russell Alan, Production of fine calcium powders by centrifugal atomization with rotating quench bath, 10.1016/j.powtec.2016.12.011
  36. Tian Liang, Anderson Iver, Riedemann Trevor, Russell Alan, Modeling the electrical resistivity of deformation processed metal–metal composites, 10.1016/j.actamat.2014.06.013
  37. Tian Liang, Anderson Iver, Riedemann Trevor, Russell Alan, Kim Hyongjune, Prospects for novel deformation processed Al/Ca composite conductors for overhead high voltage direct current (HVDC) power transmission, 10.1016/j.epsr.2013.07.017
  38. F. U. Flores D. N. Seidman D. C. Dunand N. Q. Vo TMS Annual Meeting & Exhibition 2018
  39. Trybus C.L., Spitzig W.A., Characterization of the strength and microstructural evolution of a heavily cold rolled Cu-20% Nb composite, 10.1016/0001-6160(89)90081-3
  40. Verhoeven J. D., Spitzig W. A., Jones L. L., Downing H. L., Trybus C. L., Gibson E. D., Chumbley L. S., Fritzemeier L. G., Schnittgrund G. D., Development of deformation processed copper-refractory metal composite alloys, 10.1007/bf02834066
  41. Hong S. I., Copper-Iron Filamentary Microcomposites, 10.1002/1527-2648(200107)3:7<475::aid-adem475>3.0.co;2-c
  42. Russell A. M., Chumbley L. S., Tian Y., Deformation Processed Metal-Metal Composites, 10.1002/(sici)1527-2648(200002)2:1/2<11::aid-adem11>3.0.co;2-z
  43. Russell A.M., Lund T., Chumbley L.S., Laabs F.A., Keehner L.L., Harringa J.L., A high-strength, high-conductivity Al–Ti deformation processed metal metal matrix composite, 10.1016/s1359-835x(98)00163-8
  44. Xu K., Russell A. M., Chumbley L. S., Laabs F. C., Gantovnik V. B., Tian Y., 10.1023/a:1004772526480
  45. Xu K., Wongpreedee K., Russell A. M., 10.1023/a:1021092001147
  46. Yu Wenbo, Wang Xiaojun, Zhao Hongbin, Ding Chao, Huang Zhenying, Zhai Hongxiang, Guo Zhipeng, Xiong Shoumei, Microstructure, mechanical properties and fracture mechanism of Ti 2 AlC reinforced AZ91D composites fabricated by stir casting, 10.1016/j.jallcom.2017.01.231
  47. Yu Wenbo, Zhao Hongbin, Wang Xiaojun, Wang Lei, Xiong Shoumei, Huang Zhenying, Li Shibo, Zhou Yang, Zhai Hongxiang, Synthesis and characterization of textured Ti 2 AlC reinforced magnesium composite, 10.1016/j.jallcom.2017.09.303
  48. Tian, PhD Thesis (2015)
  49. Spitzig W.A, Pelton A.R., Laabs F.C., Characterization of the strength and microstructure of heavily cold worked CuNb composites, 10.1016/0001-6160(87)90140-4
  50. Funkenbusch P. D., Lee J. K., Courtney T. H., Ductile two-phase alloys: Prediction of strengthening at high strains, 10.1007/bf02647194
  51. Trybus C.L., Chumbley L.S., Spitzig W.A., Verhoeven J.D., Problems in evaluating the dislocation densities in heavily deformed Cu-Nb composites, 10.1016/0304-3991(89)90060-0
  52. Raabe Dierk, Hangen Ude, Introduction of a modified linear rule of mixtures for the modelling of the yield strength of heavily wire drawn in situ composites, 10.1016/0266-3538(95)00094-1
  53. Brinckmann Steffen, Siegmund Thomas, Huang Yonggang, A dislocation density based strain gradient model, 10.1016/j.ijplas.2006.01.005
  54. Huang Y., Qu S., Hwang K.C., Li M., Gao H., A conventional theory of mechanism-based strain gradient plasticity, 10.1016/j.ijplas.2003.08.002
  55. Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W., Strain gradient plasticity: Theory and experiment, 10.1016/0956-7151(94)90502-9
  56. Stölken J.S., Evans A.G., A microbend test method for measuring the plasticity length scale, 10.1016/s1359-6454(98)00153-0
  57. M. Shell De Guzman G. Neubauer P. Flinn W. D. Nix MRS Proceedings 2011 308 613
  58. Lloyd D. J., Particle reinforced aluminium and magnesium matrix composites, 10.1179/imr.1994.39.1.1
  59. Abu Al-Rub Rashid K., Voyiadjis George Z., A physically based gradient plasticity theory, 10.1016/j.ijplas.2005.04.010
  60. GAO H, Mechanism-based strain gradient plasticity? I. Theory, 10.1016/s0022-5096(98)00103-3
  61. Ashby M. F., The deformation of plastically non-homogeneous materials, 10.1080/14786437008238426
  62. Fleck N.A., Hutchinson J.W., A reformulation of strain gradient plasticity, 10.1016/s0022-5096(01)00049-7
  63. Nix William D., Gao Huajian, Indentation size effects in crystalline materials: A law for strain gradient plasticity, 10.1016/s0022-5096(97)00086-0
  64. Gao Huajian, Huang Yonggang, Taylor-based nonlocal theory of plasticity, 10.1016/s0020-7683(00)00173-6
  65. Tian Liang, Russell Alan, Anderson Iver, A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal–metal composites, 10.1007/s10853-013-7982-5
  66. Demkowicz M. J., Hoagland R. G., Hirth J. P., Interface Structure and Radiation Damage Resistance in Cu-Nb Multilayer Nanocomposites, 10.1103/physrevlett.100.136102
  67. Yu Qian, Qi Liang, Chen Kai, Mishra Raja K., Li Ju, Minor Andrew M., The Nanostructured Origin of Deformation Twinning, 10.1021/nl203937t
  68. Sandim H.R.Z., Sandim M.J.R., Bernardi H.H., Lins J.F.C., Raabe D., Annealing effects on the microstructure and texture of a multifilamentary Cu–Nb composite wire, 10.1016/j.scriptamat.2004.07.026
  69. Tian Liang, Russell Alan, Phase field study of interfacial diffusion-driven spheroidization in a composite comprised of two mutually insoluble phases, 10.1063/1.4869296
  70. Zhang Liang, Demkowicz Michael J., Morphological stability of Cu-Nb nanocomposites under high-energy collision cascades, 10.1063/1.4817785
  71. Zhou Ye, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I, 10.1016/j.physrep.2017.07.005
  72. Mara Nathan A., Beyerlein Irene J., Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites, 10.1007/s10853-014-8342-9
  73. Vattré A. J., Abdolrahim N., Kolluri K., Demkowicz M. J., Computational design of patterned interfaces using reduced order models, 10.1038/srep06231
  74. Ovid’ko I. A., Misfit disclinations at crystal/crystal and crystal/glass interfaces, 10.1134/1.1131040
  75. Yao Yugui, Wang Tsuchiang, Wang Chongyu, Peierls-Nabarro model of interfacial misfit dislocation: An analytic solution, 10.1103/physrevb.59.8232
  76. Meyers M.A., Mishra A., Benson D.J., Mechanical properties of nanocrystalline materials, 10.1016/j.pmatsci.2005.08.003
  77. Wang Yinmin, Chen Mingwei, Zhou Fenghua, Ma En, High tensile ductility in a nanostructured metal, 10.1038/nature01133
  78. Suryanarayana C., Nanocrystalline materials, 10.1179/imr.1995.40.2.41
  79. Koch C.C., The synthesis and structure of nanocrystalline materials produced by mechanical attrition: A review, 10.1016/0965-9773(93)90016-5
  80. Carlton C.E., Ferreira P.J., What is behind the inverse Hall–Petch effect in nanocrystalline materials?, 10.1016/j.actamat.2007.02.021
  81. Hahn H., Padmanabhan K. A., A model for the deformation of nanocrystalline materials, 10.1080/01418639708241122
  82. Suryanarayana C., Mukhopadhyay D., Patankar S.N., Froes F.H., Grain size effects in nanocrystalline materials, 10.1557/jmr.1992.2114
  83. Yamakov V., Wolf D., Phillpot S. R., Mukherjee A. K., Gleiter H., Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation, 10.1038/nmat1035
  84. Raabe D., Herbig M., Sandlöbes S., Li Y., Tytko D., Kuzmina M., Ponge D., Choi P.-P., Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces, 10.1016/j.cossms.2014.06.002
  85. Ma A., Roters F., Raabe D., On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – Theory, experiments, and simulations, 10.1016/j.actamat.2006.01.004
  86. Chen M., Deformation Twinning in Nanocrystalline Aluminum, 10.1126/science.1083727
  87. DAO M, LU L, ASARO R, DEHOSSON J, MA E, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, 10.1016/j.actamat.2007.01.038
  88. Kocks U. F., The relation between polycrystal deformation and single-crystal deformation, 10.1007/bf02900224
  89. Gryaznov V. G., Gutkin M. Yu., Romanov A. E., Trusov L. I., On the yield stress of nanocrystals, 10.1007/bf01154943
  90. Carsley J.E., Ning J., Milligan W.W., Hackney S.A., Aifantis E.C., A simple, mixtures-based model for the grain size dependence of strength in nanophase metals, 10.1016/0965-9773(95)00257-f
  91. Gutkin M.Yu., Ovid'ko I.A., Disclinations and yield stress of metallic glass-nanocrystal composites, 10.1016/0965-9773(93)90037-c
  92. Kim Hyoung Seop, A composite model for mechanical properties of nanocrystalline materials, 10.1016/s1359-6462(98)00257-7
  93. Wang Ning, Wang Zhirui, Aust K.T., Erb U., Effect of grain size on mechanical properties of nanocrystalline materials, 10.1016/0956-7151(94)00253-e
  94. Tian, Int. J. Metall. Met. Phys, 2, 1 (2017)
  95. Hahn H., Mondal P., Padmanabhan K.A., Plastic deformation of nanocrystalline materials, 10.1016/s0965-9773(97)00135-9
  96. Gutkin M. Yu., Ovid'ko I. A., Pande C. S., Yield stress of nanocrystalline materials: role of grain-boundary dislocations, triple junctions and Coble creep, 10.1080/14786430310001616063
  97. Masumura R.A., Hazzledine P.M., Pande C.S., Yield stress of fine grained materials, 10.1016/s1359-6454(98)00150-5
  98. Kim H.S., Estrin Y., Bush M.B., Plastic deformation behaviour of fine-grained materials, 10.1016/s1359-6454(99)00353-5
  99. LI L, ANDERSON P, LEE M, BITZEK E, DERLET P, SWYGENHOVEN H, The stress–strain response of nanocrystalline metals: A quantized crystal plasticity approach, 10.1016/j.actamat.2008.10.035
  100. Radchenko A. K., Mechanical properties of green compacts. II. Effect of powder relative bulk density on the strength of compacts with different forming temperature conditions, 10.1007/s11106-005-0021-6
  101. Strömgren M., Åström H., Easterling K. E., THE EFFECT OF INTERPARTICLE CONTACT AREA ON THE STRENGTH OF COLD-PRESSED ALUMINIUM POWDER COMPACTS, 10.1179/pom.1973.16.32.001
  102. Radchenko A. K., Mechanical properties of unsintered pressing. I. Phenomenological relations for unsintered pressing strength, 10.1007/s11106-005-0004-7
  103. Moon In-Hyung, Kim Kyung-Hyup, Relationship Between Compacting Pressure, Green Density, and Green Strength of Copper Powder Compacts, 10.1179/pom.1984.27.2.80
  104. James P. J., The Green Strength of Die-Pressed Zinc Powder, 10.1179/pom.1977.20.1.21
  105. Anderson Iver E., Foley James C., Determining the role of surfaces and interfaces in the powder metallurgy processing of aluminum alloy powders, 10.1002/sia.1087
  106. , Deslandes Y., Pleizier G., , Improving iron compact green strength using powder surface modification, 10.1179/003258999665675
  107. Kellett Bruce J., Lange F. F., Thermodynamics of Densification: I, Sintering of Simple Particle Arrays, Equilibrium Configurations, Pore Stability, and Shrinkage, 10.1111/j.1151-2916.1989.tb06208.x
  108. Castro Ricardo H. R., Gouvêa Douglas, Sintering and Nanostability: The Thermodynamic Perspective, 10.1111/jace.14176
  109. Hirata Yoshihiro, Hara Akihiro, Aksay Ilhan A., Thermodynamics of densification of powder compact, 10.1016/j.ceramint.2009.03.006
  110. Liu Jianxin, De Lo David P., Particle rearrangement during powder compaction, 10.1007/s11661-001-0186-7
  111. Secondi J., Modelling powder compaction: From a pressure-density law to continuum mechanics, 10.1179/003258902225006943
  112. Khoddam Shahin, Sapanathan Thaneshan, Zahiri Saden, Hodgson Peter D., Zarei-Hanzaki Abbas, Ibrahim Raafat, Inner Architecture of Bonded Splats under Combined High Pressure and Shear : Inner Architecture of Bonded Splats under Combined…, 10.1002/adem.201500418
  113. Bal'shin, Scientific Bases of Powder Metallurgy and Fiber Metallurgy, 335 (1972)
  114. Farley R., Valentin F.H.H., Effect of particle size upon the strength of powders, 10.1016/0032-5910(68)80017-8
  115. Easterling K. E., Thölén A. R., THE ROLE OF SURFACE ENERGY AND POWDER GEOMETRY IN POWDER COMPACTION, 10.1179/pom.1973.16.31.007
  116. Bortzmeyer D., Tensile strength of ceramic powders, 10.1007/bf01116029
  117. Nikolakakis I., Pilpel N., Effects of particle shape and size on the tensile strengths of powders, 10.1016/0032-5910(88)80003-2
  118. Golubev V. K., Rabinovich K. G., Influence ff the initial state on the strength of pressed lithium hydride, 10.1007/bf02510900
  119. RYSHKEWITCH EUGENE, Compression Strength of Porous Sintered Alumina and Zirconia. : 9th Communication to Ceramography, 10.1111/j.1151-2916.1953.tb12837.x
  120. Kalpakjian, Manufacturing Engineering and Technology (1992)
  121. Lysak V.I., Kuzmin S.V., Lower boundary in metal explosive welding. Evolution of ideas, 10.1016/j.jmatprotec.2011.08.017
  122. Degarmo, Materials and Processes in Manufacturing, 969 (2004)
  123. C. Jianqiao S. Takezono L. Guangxia T. Tanaka
  124. J. Nilson Sweden Patent 3,780,554 1973
  125. Osakada K., Limb M., Mellor P.B., Hydrostatic extrusion of composite rods with hard cores, 10.1016/0020-7403(73)90011-8
  126. Ahmed N., Extrusion of copper clad aluminum wire, 10.1016/0378-3804(78)90012-8
  127. Sliwa Romana, A test determining the ability of different materials to undergo simultaneous plastic deformation to produce metal composites, 10.1016/0921-5093(91)90573-6
  128. Sliwa R., Plastic zones in the extrusion of metal composites, 10.1016/s0924-0136(96)02813-0
  129. Rhee K.Y., Han W.Y., Park H.J., Kim S.S., Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics, 10.1016/j.msea.2004.05.051
  130. Neikov, Handbook of Non-Ferrous Metal Powders (2009)
  131. Bouaziz Olivier, Kim Hyong Seop, Estrin Yuri, Architecturing of Metal-Based Composites with Concurrent Nanostructuring: A New Paradigm of Materials Design, 10.1002/adem.201200261
  132. Beyerlein Irene J., Tóth László S., Texture evolution in equal-channel angular extrusion, 10.1016/j.pmatsci.2009.01.001
  133. Latypov Marat I., Beygelzimer Yan, Kulagin Roman, Varyukhin Victor, Kim Hyoung Seop, Toward architecturing of metal composites by twist extrusion, 10.1080/21663831.2015.1034812
  134. Beygelzimer Yan, Kulagin Roman, Estrin Yuri, Toth Laszlo S., Kim Hyoung Seop, Latypov Marat I., Twist Extrusion as a Potent Tool for Obtaining Advanced Engineering Materials: A Review  : Twist Extrusion as a Potent Tool for Obtaining…, 10.1002/adem.201600873
  135. Kulagin Roman, Latypov Marat I., Kim Hyoung Seop, Varyukhin Victor, Beygelzimer Yan, Cross Flow During Twist Extrusion: Theory, Experiment, and Application, 10.1007/s11661-013-1661-7
  136. Valiev Ruslan Z., Estrin Yuri, Horita Zenji, Langdon Terence G., Zechetbauer Michael J., Zhu Yuntian T., Producing bulk ultrafine-grained materials by severe plastic deformation, 10.1007/s11837-006-0213-7
  137. Bouaziz O., Bréchet Y., Embury J. D., Heterogeneous and Architectured Materials: A Possible Strategy for Design of Structural Materials, 10.1002/adem.200700289
  138. Raabe Dierk, Choi Pyuck-Pa, Li Yujiao, Kostka Aleksander, Sauvage Xavier, Lecouturier Florence, Hono Kazuhiro, Kirchheim Reiner, Pippan Reinhard, Embury David, Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials, 10.1557/mrs2010.703
  139. Beygelzimer Yan, Estrin Yuri, Kulagin Roman, Synthesis of Hybrid Materials by Severe Plastic Deformation: A New Paradigm of SPD Processing : Synthesis of Hybrid Materials by Severe Plastic Deformation…, 10.1002/adem.201500083
  140. Lowe T. C., Zhu Y. T., Semiatin S. L., Berg D. R., Overview and Outlook for Materials Processed by Severe Plastic Deformation, Investigations and Applications of Severe Plastic Deformation (2000) ISBN:9780792362814 p.347-356, 10.1007/978-94-011-4062-1_45
  141. Investigations and Applications of Severe Plastic Deformation, ISBN:9780792362814, 10.1007/978-94-011-4062-1
  142. Nanomaterials by Severe Plastic Deformation : ZEHETBAUER:NANO-SPD O-BK, ISBN:9783527602469, 10.1002/3527602461
  143. Valiev R. Z., Zehetbauer M. J., Estrin Y., Höppel H. W., Ivanisenko Y., Hahn H., Wilde G., Roven H. J., Sauvage X., Langdon T. G., The Innovation Potential of Bulk Nanostructured Materials, 10.1002/adem.200700078
  144. Valiev, Bulk Nanostructured Materials from Severe Plastic Deformation (2000)
  145. Dieter, Mechanical Metallurgy (1986)
  146. Prangnell P.B., Bowen J.R., Apps P.J., Ultra-fine grain structures in aluminium alloys by severe deformation processing, 10.1016/j.msea.2003.10.170
  147. Segal V.M., Materials processing by simple shear, 10.1016/0921-5093(95)09705-8
  148. Varyukhin Viktor, Beygelzimer Yan, Synkov Sergey, Orlov Dmitry, Application of Twist Extrusion, 10.4028/www.scientific.net/msf.503-504.335
  149. Varyukhin Viktor, Beygelzimer Yan, Kulagin R., Prokof'eva O., Reshetov Alexey, Twist Extrusion: Fundamentals and Applications, 10.4028/www.scientific.net/msf.667-669.31
  150. Beygelzimer Y., Varyukhin V., Synkov S., Orlov D., Useful properties of twist extrusion, 10.1016/j.msea.2007.12.055
  151. Beygelzimer Yan, Orlov Dmitry, Korshunov Alexander, Synkov Sergey, Varyukhin Viktor, Vedernikova Irina, Reshetov Alexey, Synkov Alexandr, Polyakov Lev, Korotchenkova Irina, Features of Twist Extrusion: Method, Structures & Material Properties, 10.4028/www.scientific.net/ssp.114.69
  152. Bridgman, The Physics of High Pressure, 445 (1952)
  153. Kim Hyoung Seop, Finite element analysis of deformation behaviour of metals during equal channel multi-angular pressing, 10.1016/s0921-5093(01)01793-2
  154. Nishida Yoshinori, Arima Hiroaki, Kim Jin-Chun, Ando Teiichi, Rotary-die equal-channel angular pressing of an Al – 7 mass% Si – 0.35 mass% Mg alloy, 10.1016/s1359-6462(01)00985-x
  155. Chou Cheng-Yu, Lee Sheng-Long, Lin Jing-Chie, Hsu Ching-Miow, Effects of cross-channel extrusion on the microstructures and superplasticity of a Zn–22wt.% Al eutectoid alloy, 10.1016/j.scriptamat.2007.04.029
  156. Rao V. Srinivas, Kashyap B.P., Prabhu N., Hodgson P.D., T-shaped equi-channel angular pressing of Pb–Sn eutectic and its tensile properties, 10.1016/j.msea.2007.09.004
  157. Talebanpour B., Ebrahimi R., Janghorban K., Microstructural and mechanical properties of commercially pure aluminum subjected to Dual Equal Channel Lateral Extrusion, 10.1016/j.msea.2009.07.040
  158. Cerri E., De Marco P.P., Leo P., FEM and metallurgical analysis of modified 6082 aluminium alloys processed by multipass ECAP: Influence of material properties and different process settings on induced plastic strain, 10.1016/j.jmatprotec.2008.04.013
  159. Ma Aibin, Jiang Jinghua, Saito Naobumi, Shigematsu Ichinori, Yuan Yuchun, Yang Donghui, Nishida Yoshinori, Improving both strength and ductility of a Mg alloy through a large number of ECAP passes, 10.1016/j.msea.2009.01.040
  160. Nakashima Kiyotaka, Horita Zenji, Nemoto Minoru, Langdon Terence G, Development of a multi-pass facility for equal-channel angular pressing to high total strains, 10.1016/s0921-5093(99)00744-3
  161. Mani Behtash, Jahedi Mohammad, Paydar Mohammad Hossein, A modification on ECAP process by incorporating torsional deformation, 10.1016/j.msea.2011.02.015
  162. Rosochowski A., Olejnik L., Finite element analysis of two-turn Incremental ECAP, 10.1007/s12289-008-0108-y
  163. Zebardast M., Taheri A. Karimi, The cold welding of copper to aluminum using equal channel angular extrusion (ECAE) process, 10.1016/j.jmatprotec.2011.01.004
  164. Eslami P., Taheri A. Karimi, An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process, 10.1016/j.matlet.2011.03.053
  165. Eivani A.R., Taheri A. Karimi, A new method for producing bimetallic rods, 10.1016/j.matlet.2007.01.046
  166. ZHILYAEV A, LANGDON T, Using high-pressure torsion for metal processing: Fundamentals and applications, 10.1016/j.pmatsci.2008.03.002
  167. Zhilyaev A.P, Lee S, Nurislamova G.V, Valiev R.Z, Langdon T.G, Microhardness and microstructural evolution in pure nickel during high-pressure torsion, 10.1016/s1359-6462(01)00955-1
  168. Zhilyaev A.P, Nurislamova G.V, Kim B.-K, Baró M.D, Szpunar J.A, Langdon T.G, Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion, 10.1016/s1359-6454(02)00466-4
  169. Vorhauer A., Pippan R., On the homogeneity of deformation by high pressure torsion, 10.1016/j.scriptamat.2004.04.025
  170. Kawasaki Megumi, Figueiredo Roberto B., Langdon Terence G., An investigation of hardness homogeneity throughout disks processed by high-pressure torsion, 10.1016/j.actamat.2010.09.034
  171. Zhilyaev A.P, Lee S, Nurislamova G.V, Valiev R.Z, Langdon T.G, Microhardness and microstructural evolution in pure nickel during high-pressure torsion, 10.1016/s1359-6462(01)00955-1
  172. Botta Filho W.J., Fogagnolo J.B., Rodrigues C.A.D., Kiminami C.S., Bolfarini C., Yavari A.R., Consolidation of partially amorphous aluminium-alloy powders by severe plastic deformation, 10.1016/j.msea.2003.10.072
  173. Yavari A.R., Filho W.J.Botta, Rodrigues C.A.D., Cardoso C., Valiev R.Z., Nanostructured bulk Al90Fe5Nd5 prepared by cold consolidation of gas atomised powder using severe plastic deformation, 10.1016/s1359-6462(02)00057-x
  174. Bachmaier Andrea, Pippan Reinhard, Effect of oxide particles on the stabilization and final microstructure in aluminium, 10.1016/j.msea.2011.06.071
  175. LEE Z, Microstructure and microhardness of cryomilled bulk nanocrystalline Al?7.5%Mg alloy consolidated by high pressure torsion, 10.1016/j.scriptamat.2004.04.016
  176. Tokunaga Tomoharu, Kaneko Kenji, Sato Keisuke, Horita Zenji, Microstructure and mechanical properties of aluminum–fullerene composite fabricated by high pressure torsion, 10.1016/j.scriptamat.2007.12.010
  177. R. Kulagin Y. Beygelzimer Y. Ivanisenko A. Mazilkin H. Hahn IOP Conf. Ser.: Mater. Sci. Eng 2017 194
  178. Kaneko Kenji, Hata Tetsuro, Tokunaga Tomoharu, Horita Zenji, Fabrication and Characterization of Supersaturated Al-Mg Alloys by Severe Plastic Deformation and Their Mechanical Properties, 10.2320/matertrans.md200813
  179. Sapanathan Thaneshan, Khoddam Shahin, Zahiri Saden H., Zarei-Hanzaki Abbas, Ibrahim Raafat, Hybrid metallic composite materials fabricated by sheathed powder compaction, 10.1007/s10853-015-9621-9
  180. T. Sapanathan PhD Thesis 2014
  181. Sapanathan Thaneshan, Khoddam Shahin, Zahiri Saden H., Spiral extrusion of aluminum/copper composite for future manufacturing of hybrid rods: A study of bond strength and interfacial characteristics, 10.1016/j.jallcom.2013.03.210
  182. Shirzadi, Microjoining and Nanojoining, 234 (2004)
  183. Brandon, Joining Processes: An Introduction, 378 (1997)
  184. Khoddam S., Estrin Y., Kim H.S., Bouaziz O., Torsional and compressive behaviours of a hybrid material: Spiral fibre reinforced metal matrix composite, 10.1016/j.matdes.2015.06.165
  185. Sapanathan Thaneshan, Ibrahim Raafat, Khoddam Shahin, Zahiri Saden H., Shear blanking test of a mechanically bonded aluminum/copper composite using experimental and numerical methods, 10.1016/j.msea.2014.11.045
  186. Sova A., Grigoriev S., Okunkova A., Smurov I., Potential of cold gas dynamic spray as additive manufacturing technology, 10.1007/s00170-013-5166-8
  187. Raoelison, Add. Manuf, 19, 134 (2017)
  188. Liu Liming, Zhuang Zhongliang, Liu Fei, Zhu Meili, Additive manufacturing of steel–bronze bimetal by shaped metal deposition: interface characteristics and tensile properties, 10.1007/s00170-013-5191-7
  189. A. G. Truog PhD Dissertation 2012
  190. Sapanathan Thaneshan, Khoddam Shahin, Zahiri Saden H., Zarei-Hanzaki A., Strength changes and bonded interface investigations in a spiral extruded aluminum/copper composite, 10.1016/j.matdes.2014.01.030
  191. Vinogradov Oleg, Fundamentals of Kinematics and Dynamics of Machines and Mechanisms, ISBN:9780849302572, 10.1201/9781420042337
  192. Meltzer RL, Fiorini YR, Horstman RT, Moore IC, Batik AL, Guess TR, Allred RE, Gerstle FP, Comparison of Lap Shear Test Specimens, 10.1520/jte10666j
  193. Lee J.E., Bae D.H., Chung W.S., Kim K.H., Lee J.H., Cho Y.R., Effects of annealing on the mechanical and interface properties of stainless steel/aluminum/copper clad-metal sheets, 10.1016/j.jmatprotec.2006.11.121
  194. Small Specimen Test Techniques: Fourth Volume, ISBN:9780803128972, 10.1520/stp1418-eb
  195. Lucas G.E., The development of small specimen mechanical test techniques, 10.1016/0022-3115(83)90041-7
  196. Kwon Hyouk Chon, Jung Taek Kyun, Lim Sung Chul, Kim Mok Soon, Fabrication of Copper Clad Aluminum Wire (CCAW) by Indirect Extrusion and Drawing, 10.4028/www.scientific.net/msf.449-452.317
  197. Hartley Craig S., Upper bound analysis of extrusion of axisymmetric, piecewise homogeneous tubes, 10.1016/0020-7403(73)90097-0
  198. Tokuno H., Ikeda K., Analysis of deformation in extrusion of composite rods, 10.1016/0924-0136(91)90067-o
  199. Avitzur, J. Manuf. Sci. Eng, 104, 293 (1982)
  200. Avitzur, J. Manuf. Sci. Eng, 108, 205 (1986)
  201. Chitkara N.R., Aleem A., Extrusion of axi-symmetric bi-metallic tubes: some experiments using hollow billets and the application of a generalised slab method of analysis, 10.1016/s0020-7403(01)00066-2
  202. Berski S., Dyja H., Banaszek G., Janik M., Theoretical analysis of bimetallic rods extrusion process in double reduction die, 10.1016/j.jmatprotec.2004.04.052
  203. Haghighat H., Asgari G.R., A generalized spherical velocity field for bi-metallic tube extrusion through dies of any shape, 10.1016/j.ijmecsci.2011.01.005
  204. Kazanowski Pawel, Epler Mario E, Misiolek Wojciech Z, Bi-metal rod extrusion—process and product optimization, 10.1016/j.msea.2003.11.002
  205. Khosravifard A., Ebrahimi R., Investigation of parameters affecting interface strength in Al/Cu clad bimetal rod extrusion process, 10.1016/j.matdes.2009.06.026
  206. Beygelzimer Y., Reshetov A., Synkov S., Prokof’eva O., Kulagin R., Kinematics of metal flow during twist extrusion investigated with a new experimental method, 10.1016/j.jmatprotec.2008.08.022
  207. Farhoumand A., Hodgson P.D., Khoddam S., Fang X.Y., Multiple pass axi-symmetrical forward spiral extrusion of interstitial-free (IF) steel, 10.1016/j.msea.2013.05.034
  208. Khoddam S., Farhoumand A., Hodgson P.D., Upper-bound analysis of axi-symmetric forward spiral extrusion, 10.1016/j.mechmat.2011.07.009
  209. Dundurs J., Sotiropoulos D. A., On stress conditions and computations at bi-material interfaces, 10.1007/s004660050306
  210. Sapanathan Thaneshan, Ibrahim Raafat, Khoddam Shahin, Zahiri Saden H., Numerical Modeling to Determine Test Conditions of Shear Blanking Test for a Hybrid Material, 10.4028/www.scientific.net/amr.1016.125
  211. Khoddam Shahin, Lam Y. C., Thomson P. F., The effect of specimen geometry on the accuracy of the constitutive equation derived from the hot torsion test, 10.1002/srin.199501086
  212. Shamdani, Mechanical and Aerospace Engineering, 224 (2012)
  213. H. S. Kim Y. Estrin J. Jung 2015
  214. Kim Hak-Sung, Dhage Sanjay R., Shim Dong-Eun, Hahn H. Thomas, Intense pulsed light sintering of copper nanoink for printed electronics, 10.1007/s00339-009-5360-6
  215. Gubbi Jayavardhana, Buyya Rajkumar, Marusic Slaven, Palaniswami Marimuthu, Internet of Things (IoT): A vision, architectural elements, and future directions, 10.1016/j.future.2013.01.010
  216. Atzori Luigi, Iera Antonio, Morabito Giacomo, The Internet of Things: A survey, 10.1016/j.comnet.2010.05.010
  217. Kang Hyunkyoo, Sowade Enrico, Baumann Reinhard R., Direct Intense Pulsed Light Sintering of Inkjet-Printed Copper Oxide Layers within Six Milliseconds, 10.1021/am404581b
  218. Wang Xuelin, Liu Jing, Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications, 10.3390/mi7120206
  219. Wang, Imaging Sci. Photochem, 32, 382 (2014)
  220. Zheng Yi, Zhang Qin, Liu Jing, Pervasive liquid metal based direct writing electronics with roller-ball pen, 10.1063/1.4832220
  221. Jin Sang Woo, Park Jeongwon, Hong Soo Yeong, Park Heun, Jeong Yu Ra, Park Junhong, Lee Sang-Soo, Ha Jeong Sook, Stretchable Loudspeaker using Liquid Metal Microchannel, 10.1038/srep11695
  222. Saravanamuttoo, Gas Turbine Theory (2001)
  223. J. C. Schilling Google Patents 1997
  224. Ewing, Google Patents (1979)
Bibliographic reference Khoddam, Shahin ; Tian, Liang ; Sapanathan, Thaneshan ; Hodgson, Peter D. ; Zarei-Hanzaki, Abbas. Latest Developments in Modeling and Characterization of Joining Metal Based Hybrid Materials. In: Advanced Engineering Materials, Vol. 20, no. 9, p. 1800048 (2018)
Permanent URL http://hdl.handle.net/2078.1/199240