User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Deformation of nanocrystalline binary aluminum alloys with segregation of Mg, Co and Ti at grain boundaries

  1. R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, Hoboken, NJ, 2014).
  2. ZHILYAEV A, LANGDON T, Using high-pressure torsion for metal processing: Fundamentals and applications, 10.1016/j.pmatsci.2008.03.002
  3. Zehetbauer Michael, Grössinger Roland, Krenn Heinz, Krystian Maciej, Pippan Reinhard, Rogl Peter, Waitz Thomas, Würschum Roland, Bulk Nanostructured Functional Materials By Severe Plastic Deformation, 10.1002/adem.201000119
  4. Estrin Y., Vinogradov A., Extreme grain refinement by severe plastic deformation: A wealth of challenging science, 10.1016/j.actamat.2012.10.038
  5. Valiev Ruslan Z., Langdon Terence G., The Art and Science of Tailoring Materials by Nanostructuring for Advanced Properties Using SPD Techniques, 10.1002/adem.201000019
  6. Valiev Ruslan Z., Sabirov Ilchat, Zhilyaev Alexander P., Langdon Terence G., Bulk Nanostructured Metals for Innovative Applications, 10.1007/s11837-012-0427-9
  7. Wu Z.X., Zhang Y.W., Jhon M.H., Greer J.R., Srolovitz D.J., Nanostructure and surface effects on yield in Cu nanowires, 10.1016/j.actamat.2012.11.053
  8. Sitdikov Oleg, Avtokratova Elena, Babicheva Rita, Sakai Taku, Tsuzaki Kaneaki, Watanabe Yoshimi, Influence of Processing Regimes on Fine-Grained Microstructure Development in an Al–Mg–Sc Alloy by Hot Equal-Channel Angular Pressing, 10.2320/matertrans.md201108
  9. Sitdikov O. Sh., Avtokratova E. V., Babicheva R. I., Effect of temperature on the formation of a microstructure upon equal-channel angular pressing of the Al-Mg-Sc 1570 alloy, 10.1134/s0031918x10080053
  10. Bachurin D. V., Gumbsch P., Elastic and plastic anisotropy after straining of nanocrystalline palladium, 10.1103/physrevb.85.085407
  11. Khisamov R. Kh., Safarov I. M., Mulyukov R. R., Yumaguzin Yu. M., Effect of grain boundaries on the electron work function of nanocrystalline nickel, 10.1134/s1063783413010186
  12. Shanmugasundaram T., Heilmaier M., Murty B.S., Sarma V. Subramanya, On the Hall–Petch relationship in a nanostructured Al–Cu alloy, 10.1016/j.msea.2010.08.070
  13. Khisamov R. Kh., Yumaguzin Yu. M., Mulyukov R. R., Nazarov K. S., Salimov I. M., Safarov I. M., Zubairov L. R., Effect of a crystalline structure on the ion-electron emission of the Al + 6% Mg alloy, 10.1134/s1063785013030061
  14. Zhang J., Huang Y.N., Mao C., Peng P., Structural, elastic and electronic properties of θ (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al–Cu–Mg series alloys: First-principles calculations, 10.1016/j.ssc.2012.09.003
  15. Avtokratova E., Sitdikov O., Markushev M., Mulyukov R., Extraordinary high-strain rate superplasticity of severely deformed Al–Mg–Sc–Zr alloy, 10.1016/j.msea.2012.01.041
  16. Zha Min, Li Yanjun, Mathiesen Ragnvald H., Bjørge Ruben, Roven Hans J., Achieve high ductility and strength in an Al–Mg alloy by severe plastic deformation combined with inter-pass annealing, 10.1016/j.msea.2013.12.103
  17. Al‐Qawabeha Ubeidulla F., Al‐Qawabah Safwan M., Effect of roller burnishing on pure aluminum alloyed by copper, 10.1108/00368791311303438
  18. Wang Jiong, Shang Shun-Li, Wang Yi, Mei Zhi-Gang, Liang Yong-Feng, Du Yong, Liu Zi-Kui, First-principles calculations of binary Al compounds: Enthalpies of formation and elastic properties, 10.1016/j.calphad.2011.09.009
  19. Zhou Wei, Liu Lijuan, Li Baoling, Song Qinggong, Wu Ping, Structural, Elastic, and Electronic Properties of Al-Cu Intermetallics from First-Principles Calculations, 10.1007/s11664-008-0587-0
  20. Zugic R., Szpunar B., Krstic V. D., Erb U., Effect of porosity on the elastic response of brittle materials: An embedded-atom method approach, 10.1080/01418619708214009
  21. Sauvage Xavier, Ganeev Artur, Ivanisenko Yulia, Enikeev Nariman, Murashkin Maxim, Valiev Ruslan, Grain Boundary Segregation in UFG Alloys Processed by Severe Plastic Deformation : Grain Boundary Segregation in UFG, 10.1002/adem.201200060
  22. Sabirov I., Murashkin M.Yu., Valiev R.Z., Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, 10.1016/j.msea.2012.09.020
  23. Sauvage X., Enikeev N., Valiev R., Nasedkina Y., Murashkin M., Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy, 10.1016/j.actamat.2014.03.033
  24. Abramova M.M., Enikeev N.A., Valiev R.Z., Etienne A., Radiguet B., Ivanisenko Y., Sauvage X., Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel, 10.1016/j.matlet.2014.07.188
  25. Schiøtz J., Vegge T., Di Tolla F. D., Jacobsen K. W., Atomic-scale simulations of the mechanical deformation of nanocrystalline metals, 10.1103/physrevb.60.11971
  26. Bachurin D V, Gumbsch P, Atomistic simulation of the deformation of nanocrystalline palladium: the effect of voids, 10.1088/0965-0393/22/2/025011
  27. Tingdong Xu, Lei Zheng, The elastic modulus in the grain-boundary region of polycrystalline materials, 10.1080/09500830410001663383
  28. Babicheva Rita I., Mulyukov Kharis Ya., Thermomechanical treatment to achieve stable two-way shape memory strain without training in Ti-49.8 at.% Ni alloy, 10.1007/s00339-014-8345-z
  29. Surikova N. S., Klopotov A. A., Korznikova E. A., Mechanisms of plastic deformation in microcrystalline and nanocrystalline TiNi-based alloys, 10.1134/s0031918x10090103
  30. Abo-Elsoud M., Esmail H., Sobhy M. S., Correlation between elastic modulus of Al–Cu alloys and metallurgical characteristics of their constituent elements, 10.1080/10420150701208393
  31. Babicheva Rita I., Dmitriev Sergey V., Zhang Ying, Kok Shaw Wei, Zhou Kun, Effect of Co Distribution on Plastic Deformation of Nanocrystalline Al-10.2 at.% Co Alloy, 10.1155/2015/231848
  32. Sha Gang, Ringer Simon P., Duan Zhi Chao, Langdon Terence G., An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing, 10.3139/146.110227
  33. Fernández R., González-Doncel G., A unified description of solid solution creep strengthening in Al–Mg alloys, 10.1016/j.msea.2012.04.080
  34. Villuendas Aranzazu, Jorba Jordi, Roca Antoni, The Role of Precipitates in the Behavior of Young’s Modulus in Aluminum Alloys, 10.1007/s11661-014-2328-8
  35. Liddicoat Peter V., Liao Xiao-Zhou, Zhao Yonghao, Zhu Yuntian, Murashkin Maxim Y., Lavernia Enrique J., Valiev Ruslan Z., Ringer Simon P., Nanostructural hierarchy increases the strength of aluminium alloys, 10.1038/ncomms1062
  36. Ferragut Rafael, Liddicoat Peter V., Liao Xiao-Zhou, Zhao Yong-Hao, Lavernia Enrique J., Valiev Ruslan Z., Dupasquier Alfredo, Ringer Simon P., Chemistry of grain boundary environments in nanocrystalline Al 7075, 10.1016/j.jallcom.2009.10.104
  37. Brodova I. G., Shirinkina I. G., Petrova A. N., Antonova O. V., Pilyugin V. P., Evolution of the structure of V95 aluminum alloy upon high-pressure torsion, 10.1134/s0031918x11050036
  38. Crump Jennifer, Qiao Xiao Guang, Starink Marco J., The effect of high-pressure torsion on the behaviour of intermetallic particles present in Al–1Mg and Al–3Mg, 10.1007/s10853-011-5955-0
  39. Valiev R.Z., Enikeev N.A., Murashkin M.Yu., Kazykhanov V.U., Sauvage X., On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation, 10.1016/j.scriptamat.2010.07.014
  40. Nurislamova Gulnaz, Sauvage Xavier, Murashkin Maxim, Islamgaliev Rinat, Valiev Ruslan, Nanostructure and related mechanical properties of an Al–Mg–Si alloy processed by severe plastic deformation, 10.1080/09500830802186938
  41. Valiev R. Z., Enikeev N. A., Murashkin M. Yu., Aleksandrov S. E., Goldshtein R. V., Superstrength of ultrafine-grained aluminum alloys produced by severe plastic deformation, 10.1134/s1028335810060054
  42. Straumal B., Valiev R., Kogtenkova O., Zieba P., Czeppe T., Bielanska E., Faryna M., Thermal evolution and grain boundary phase transformations in severely deformed nanograined Al–Zn alloys, 10.1016/j.actamat.2008.08.021
  43. Straumal B.B., Korneva A., Kogtenkova O., Kurmanaeva L., Zięba P., Wierzbicka-Miernik A., Zhevnenko S.N., Baretzky B., Grain boundary wetting and premelting in the Cu–Co alloys, 10.1016/j.jallcom.2014.01.156
  44. Straumal B.B., Sauvage X., Baretzky B., Mazilkin A.A., Valiev R.Z., Grain boundary films in Al–Zn alloys after high pressure torsion, 10.1016/j.scriptamat.2013.09.019
  45. Homer Eric R., Foiles Stephen M., Holm Elizabeth A., Olmsted David L., Phenomenology of shear-coupled grain boundary motion in symmetric tilt and general grain boundaries, 10.1016/j.actamat.2012.10.005
  46. MOLODOV D, IVANOV V, GOTTSTEIN G, Low angle tilt boundary migration coupled to shear deformation, 10.1016/j.actamat.2006.10.045
  47. Sheikh-Ali A.D., Coupling of grain boundary sliding and migration within the range of boundary specialness, 10.1016/j.actamat.2010.07.043
  48. Gorkaya Tatiana, Molodov Dmitri A., Gottstein Günter, Stress-driven migration of symmetrical 〈100〉 tilt grain boundaries in Al bicrystals, 10.1016/j.actamat.2009.07.036
  49. Molodov Dmitri A., Gorkaya Tatiana, Gottstein Günter, Dynamics of grain boundaries under applied mechanical stress, 10.1007/s10853-010-5233-6
  50. Frolov T., Effect of interfacial structural phase transitions on the coupled motion of grain boundaries: A molecular dynamics study, 10.1063/1.4880715
  51. Gorkaya Tatiana, Molodov Konstantin D., Molodov Dmitri A., Gottstein Günter, Concurrent grain boundary motion and grain rotation under an applied stress, 10.1016/j.actamat.2011.05.042
  52. Molodov Dmitri A., Gorkaya Tatiana, Gottstein Günter, Migration of the Σ7 tilt grain boundary in Al under an applied external stress, 10.1016/j.scriptamat.2011.08.030
  53. Mompiou F., Legros M., Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films, 10.1016/j.scriptamat.2014.11.004
  54. Rahman M.J., Zurob H.S., Hoyt J.J., A comprehensive molecular dynamics study of low-angle grain boundary mobility in a pure aluminum system, 10.1016/j.actamat.2014.03.063
  55. Maier Ann-Kathrin, Mari Daniele, Tkalcec Iva, Schaller Robert, Theoretical modelling of grain boundary anelastic relaxations, 10.1016/j.actamat.2014.04.016
  56. Schäfer Jonathan, Albe Karsten, Influence of solutes on the competition between mesoscopic grain boundary sliding and coupled grain boundary motion, 10.1016/j.scriptamat.2011.11.031
  57. Schäfer Jonathan, Albe Karsten, Competing deformation mechanisms in nanocrystalline metals and alloys: Coupled motion versus grain boundary sliding, 10.1016/j.actamat.2012.07.044
  58. Abdeljawad Fadi, Foiles Stephen M., Stabilization of nanocrystalline alloys via grain boundary segregation: A diffuse interface model, 10.1016/j.actamat.2015.07.058
  59. Babicheva Rita I., Dmitriev Sergey V., Zhang Ying, Kok Shaw Wei, Srikanth Narasimalu, Liu Bo, Zhou Kun, Effect of grain boundary segregations of Fe, Co, Cu, Ti, Mg and Pb on small plastic deformation of nanocrystalline Al, 10.1016/j.commatsci.2014.11.038
  60. Babicheva Rita I., Dmitriev Sergey V., Bai Lichun, Zhang Ying, Kok Shaw Wei, Kang Guozheng, Zhou Kun, Effect of grain boundary segregation on the deformation mechanisms and mechanical properties of nanocrystalline binary aluminum alloys, 10.1016/j.commatsci.2016.02.013
  61. Babicheva Rita, Dmitriev Sergey V., Zhang Ying, Kok Shaw Wei, Zhou Kun, Effect of Grain Boundary Segregation on Shear Deformation of Nanocrystalline Binary Aluminum Alloys at Room Temperature, 10.4028/www.scientific.net/msf.838-839.89
  62. Brandstetter S., Derlet P.M., Van Petegem S., Van Swygenhoven H., Williamson–Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations, 10.1016/j.actamat.2007.09.007
  63. Bachurin D.V., Gumbsch P., Accommodation processes during deformation of nanocrystalline palladium, 10.1016/j.actamat.2010.06.026
  64. R. J. Gillespie, D. A. Humphreys, N. C. Baird, and E. A. Robinson, Chemistry (Allyn and Bacon, Newton, Mass., 1986).
  65. Plimpton Steve, Fast Parallel Algorithms for Short-Range Molecular Dynamics, 10.1006/jcph.1995.1039
  66. LAMMPS Molecular Dynamics Simulator. http://www.lammps.sandia.gov (cited April 14, 2015).
  67. Purja Pun G P, Yamakov V, Mishin Y, Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10martensitic transformation, 10.1088/0965-0393/23/6/065006
  68. Zope Rajendra R., Mishin Y., Interatomic potentials for atomistic simulations of the Ti-Al system, 10.1103/physrevb.68.024102
  69. Mendelev M.I., Asta M., Rahman M.J., Hoyt J.J., Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–Mg alloys, 10.1080/14786430903260727
  70. Wolf D., Yamakov V., Phillpot S.R., Mukherjee A., Gleiter H., Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments?, 10.1016/j.actamat.2004.08.045
Bibliographic reference Zinovev, Aleksandr ; Bapanina, M. G. ; Babicheva, R. I. ; Enikeev, N. A. ; Dmitriev, S. V. ; et. al. Deformation of nanocrystalline binary aluminum alloys with segregation of Mg, Co and Ti at grain boundaries. In: Physics of Metals and Metallography, Vol. 118, no.1, p. 65-74 (2017)
Permanent URL http://hdl.handle.net/2078.1/201945