User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

Charged-particle nuclear modification factors in XeXe collisions at $ \sqrt{s_{\mathrm{NN}}} = 5.44 $ TeV

  • Open access
  • PDF
  • 743.80 K
  1. Qin Guang-You, Wang Xin-Nian, Jet quenching in high-energy heavy-ion collisions, 10.1142/s0218301315300143
  2. J.D. Bjorken, Energy loss of energetic partons in quark-gluon plasma: possible extinction of high p T jets in hadron-hadron collisions, FERMILAB-PUB-82-059-T (1982).
  3. D. d’Enterria, Jet quenching, in Relativistic heavy ion physics, R. Stock ed., Landolt-Börnstein, Springer Germany (2010), arXiv:0902.2011 .
  4. M. Gyulassy, I. Vitev and X.N. Wang, High p T azimuthal asymmetry in noncentral A+A at RHIC, Phys. Rev. Lett. 86 (2001) 2537 [ nucl-th/0012092 ] [ INSPIRE ].
  5. A.M. Poskanzer and S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev. C 58 (1998) 1671 [ nucl-ex/9805001 ] [ INSPIRE ].
  6. J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev. D 46 (1992) 229 [ INSPIRE ].
  7. P.F. Kolb, J. Sollfrank and U.W. Heinz, Anisotropic transverse flow and the quark hadron phase transition, Phys. Rev. C 62 (2000) 054909 [ hep-ph/0006129 ] [ INSPIRE ].
  8. M.L. Miller, K. Reygers, S.J. Sanders and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205 [ nucl-ex/0701025 ] [ INSPIRE ].
  9. BRAHMS collaboration, I. Arsene et al., Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1 [ nucl-ex/0410020 ] [ INSPIRE ].
  10. B.B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [ nucl-ex/0410022 ] [ INSPIRE ].
  11. STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [ nucl-ex/0501009 ] [ INSPIRE ].
  12. PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [ nucl-ex/0410003 ] [ INSPIRE ].
  13. ALICE collaboration, Centrality dependence of charged particle production at large transverse momentum in Pb-Pb Collisions at s N N = 2.76 $$ \sqrt{s_{\mathrm{NN}}}=2.76 $$ TeV, Phys. Lett. B 720 (2013) 52 [ arXiv:1208.2711 ] [ INSPIRE ].
  14. ALICE collaboration, Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC, arXiv:1802.09145 [ INSPIRE ].
  15. ATLAS collaboration, Measurement of charged-particle spectra in Pb+Pb collisions at s N N = 2.76 $$ \sqrt{s_{\mathrm{NN}}}=2.76 $$ TeV with the ATLAS detector at the LHC, JHEP 09 (2015) 050 [ arXiv:1504.04337 ] [ INSPIRE ].
  16. CMS collaboration, Study of high-p T charged particle suppression in PbPb compared to pp collisions at s N N = 2.76 $$ \sqrt{s_{NN}}=2.76 $$ TeV, Eur. Phys. J. C 72 (2012) 1945 [ arXiv:1202.2554 ] [ INSPIRE ].
  17. CMS collaboration, Charged-particle nuclear modification factors in PbPb and pPb collisions at s N N = 5.02 $$ \sqrt{s_{\mathrm{NN}}}=5.02 $$ TeV, JHEP 04 (2017) 039 [ arXiv:1611.01664 ] [ INSPIRE ].
  18. ATLAS collaboration, Transverse momentum, rapidity and centrality dependence of inclusive charged-particle production in s N N = 5.02 $$ \sqrt{s_{NN}}=5.02 $$ TeV p + Pb collisions measured by the ATLAS experiment, Phys. Lett. B 763 (2016) 313 [ arXiv:1605.06436 ] [ INSPIRE ].
  19. C. Loizides, J. Nagle and P. Steinberg, Improved version of the PHOBOS Glauber Monte Carlo, SoftwareX 1-2 (2015) 13 [ arXiv:1408.2549 ] [ INSPIRE ].
  20. ALICE collaboration, Transverse momentum spectra and nuclear modification factors of charged particles in Xe-Xe collisions at s N N = 5.44 $$ \sqrt{s_{\mathrm{NN}}}=5.44 $$ TeV, arXiv:1805.04399 [ INSPIRE ].
  21. BRAHMS collaboration, I.C. Arsene et al., Rapidity and centrality dependence of particle production for identified hadrons in Cu+Cu collisions at s N N = 200 $$ \sqrt{s_{NN}}=200 $$ GeV, Phys. Rev. C 94 (2016) 014907 [ arXiv:1602.01183 ] [ INSPIRE ].
  22. PHOBOS collaboration, B. Alver et al., System size and centrality dependence of charged hadron transverse momentum spectra in Au+Au and Cu+Cu collisions at s N N = 62.4 $$ \sqrt{s_{\mathrm{NN}}}=62.4 $$ GeV and 200 GeV, Phys. Rev. Lett. 96 (2006) 212301 [ nucl-ex/0512016 ] [ INSPIRE ].
  23. PHENIX collaboration, A. Adare et al., Onset of π 0 suppression studied in Cu+Cu collisions at s N N = 22.4 $$ \sqrt{s_{\mathrm{NN}}}=22.4 $$ , 62.4 and 200 GeV, Phys. Rev. Lett. 101 (2008) 162301 [ arXiv:0801.4555 ] [ INSPIRE ].
  24. STAR collaboration, B.I. Abelev et al., Spectra of identified high-p T π± and p p ¯ $$ p\left(\overline{p}\right) $$ in Cu+Cu collisions at s N N = 200 $$ \sqrt{s_{NN}}=200 $$ GeV, Phys. Rev. C 81 (2010) 054907 [ arXiv:0911.3130 ] [ INSPIRE ].
  25. CMS collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, 2014 JINST 9 P10009 [ arXiv:1405.6569 ] [ INSPIRE ].
  26. CMS collaboration, The CMS trigger system, 2017 JINST 12 P01020 [ arXiv:1609.02366 ] [ INSPIRE ].
  27. CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [ INSPIRE ].
  28. K. Werner, F.-M. Liu and T. Pierog, Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at RHIC, Phys. Rev. C 74 (2006) 044902 [ hep-ph/0506232 ] [ INSPIRE ].
  29. T. Pierog, I. Karpenko, J.M. Katzy, E. Yatsenko and K. Werner, EPOS LHC: test of collective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. C 92 (2015) 034906 [ arXiv:1306.0121 ] [ INSPIRE ].
  30. I.P. Lokhtin and A.M. Snigirev, A model of jet quenching in ultrarelativistic heavy ion collisions and high-p T hadron spectra at RHIC, Eur. Phys. J. C 45 (2006) 211 [ hep-ph/0506189 ] [ INSPIRE ].
  31. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [ arXiv:0710.3820 ] [ INSPIRE ].
  32. CMS collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155 [ arXiv:1512.00815 ] [ INSPIRE ].
  33. C. Loizides, J. Kamin and D. d’Enterria, Improved Monte Carlo Glauber predictions at present and future nuclear colliders, Phys. Rev. C 97 (2018) 054910 [ arXiv:1710.07098 ] [ INSPIRE ].
  34. ALICE collaboration, Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe-Xe collisions at s N N = 5.44 $$ \sqrt{s_{\mathrm{NN}}}=5.44 $$ TeV, arXiv:1805.04432 [ INSPIRE ].
  35. Klein Spencer R., Nystrand Joakim, Seger Janet, Gorbunov Yuri, Butterworth Joey, STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions, 10.1016/j.cpc.2016.10.016
  36. CMS collaboration, Particle-flow reconstruction and global event description with the CMS detector, 2017 JINST 12 P10003 [ arXiv:1706.04965 ] [ INSPIRE ].
  37. ALICE collaboration, Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at s N N = 2.76 $$ \sqrt{s_{NN}}=2.76 $$ TeV, Phys. Lett. B 728 (2014) 216 [Erratum ibid. B 734 (2014) 409] [ arXiv:1307.5543 ] [ INSPIRE ].
  38. CMS collaboration, Charged particle transverse momentum spectra in pp collisions at s = 0.9 $$ \sqrt{s}=0.9 $$ and 7 TeV, JHEP 08 (2011) 086 [ arXiv:1104.3547 ] [ INSPIRE ].
  39. Bähr Manuel, Gieseke Stefan, Gigg Martyn A., Grellscheid David, Hamilton Keith, Latunde-Dada Oluseyi, Plätzer Simon, Richardson Peter, Seymour Michael H., Sherstnev Alexander, Webber Bryan R., Herwig++ physics and manual, 10.1140/epjc/s10052-008-0798-9
  40. Cheuk-Yin Wong, Wilk G., , 10.5506/aphyspolb.43.2047
  41. CMS collaboration, Nuclear effects on the transverse momentum spectra of charged particles in p-Pb collisions at s N N = 5.02 $$ \sqrt{s_{\mathrm{NN}}}=5.02 $$ TeV, Eur. Phys. J. C 75 (2015) 237 [ arXiv:1502.05387 ] [ INSPIRE ].
  42. CMS collaboration, CMS luminosity calibration for the pp reference run at s = 5.02 $$ \sqrt{s}=5.02 $$ TeV, CMS-PAS-LUM-16-001 (2016).
  43. Helenius Ilkka, Eskola Kari J., Honkanen Heli, Salgado Carlos A., Impact-parameter dependent nuclear parton distribution functions: EPS09s and EKS98s and their applications in nuclear hard processes, 10.1007/jhep07(2012)073
  44. CMS collaboration, Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at s N N = 2.76 $$ {\sqrt{s}}_{NN}=2.76 $$ TeV, Phys. Rev. C 87 (2013) 014902 [ arXiv:1204.1409 ] [ INSPIRE ].
  45. PHENIX collaboration, A. Adare et al., Spectra and ratios of identified particles in Au+Au and d+Au collisions at s N N = 200 $$ \sqrt{s_{\mathrm{NN}}}=200 $$ GeV, Phys. Rev. C 88 (2013) 024906 [ arXiv:1304.3410 ] [ INSPIRE ].
  46. Loizides Constantin, Morsch Andreas, Absence of jet quenching in peripheral nucleus–nucleus collisions, 10.1016/j.physletb.2017.09.002
  47. ALICE collaboration, Analysis of the apparent nuclear modification in peripheral Pb-Pb collisions at 5.02 TeV, arXiv:1805.05212 [ INSPIRE ].
  48. Jia Jiangyong, Influence of the nucleon–nucleon collision geometry on the determination of the nuclear modification factor for nucleon–nucleus and nucleus–nucleus collisions, 10.1016/j.physletb.2009.10.044
  49. Y. He, T. Luo, X.-N. Wang and Y. Zhu, Linear Boltzmann transport for jet propagation in the quark-gluon plasma: elastic processes and medium recoil, Phys. Rev. C 91 (2015) 054908 [Erratum ibid. C 97 (2018) 019902] [ arXiv:1503.03313 ] [ INSPIRE ].
  50. Cao Shanshan, Luo Tan, Qin Guang-You, Wang Xin-Nian, Heavy and light flavor jet quenching at RHIC and LHC energies, 10.1016/j.physletb.2017.12.023
  51. M. Djordjevic, Theoretical formalism of radiative jet energy loss in a finite size dynamical QCD medium, Phys. Rev. C 80 (2009) 064909 [ arXiv:0903.4591 ] [ INSPIRE ].
  52. Djordjevic Magdalena, Djordjevic Marko, LHC jet suppression of light and heavy flavor observables, 10.1016/j.physletb.2014.05.053
  53. J. Xu, J. Liao and M. Gyulassy, Bridging soft-hard transport properties of quark-gluon plasmas with CUJET3.0, JHEP 02 (2016) 169 [ arXiv:1508.00552 ] [ INSPIRE ].
  54. Shi Shuzhe, Liao Jinfeng, Gyulassy Miklos, Probing the color structure of the perfect QCD fluids via soft-hard-event-by-event azimuthal correlations, 10.1088/1674-1137/42/10/104104
  55. Andrés Carlota, Armesto Néstor, Luzum Matthew, Salgado Carlos A., Zurita Pía, Energy versus centrality dependence of the jet quenching parameter $$\hat{q}$$ q ^ at RHIC and LHC: a new puzzle?, 10.1140/epjc/s10052-016-4320-5
  56. Kang Zhong-Bo, Lashof-Regas Robin, Ovanesyan Grigory, Saad Philip, Vitev Ivan, Jet Quenching Phenomenology from Soft-Collinear Effective Theory with Glauber Gluons, 10.1103/physrevlett.114.092002
  57. Y.-T. Chien et al., Jet quenching from QCD evolution, Phys. Rev. D 93 (2016) 074030 [ arXiv:1509.02936 ] [ INSPIRE ].
Bibliographic reference Bakhshiansohi, Hamed ; Bondu, Olivier ; Brochet, Sébastien ; Bruno, Giacomo ; Caputo, Claudio ; et. al. Charged-particle nuclear modification factors in XeXe collisions at $ \sqrt{s_{\mathrm{NN}}} = 5.44 $ TeV. In: Journal of High Energy Physics, Vol. 1810, p. 138 (2018)
Permanent URL http://hdl.handle.net/2078.1/208047