User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

On the importance of leaving group ability in reactions of ammonium, oxonium, phosphonium, and sulfonium ylides

  1. Nitrogen, Oxygen and Sulfur Ylide Chemistry: A Practical Approach in Chemistry, Oxford University Press, Oxford, 2002;
  2. Phosphorus Ylides, ISBN:9783527613908, 10.1002/9783527613908
  3. Li, Chem. Rev., 97, 2341 (1997)
  4. Cheng, J. Org. Chem., 64, 604 (1999)
  5. Naito, J. Am. Chem. Soc., 116, 10080 (1994)
  6. Calculations were carried out at the B3LYP/6-311+G**//B3LYP/6-31G* level of theory, including a continuum description of THF solvent for both the geometry optimization and the single point energy calculation using the Jaguar 4.0 pseudospectral program package (Jaguar 4.0, Schrödinger, Inc., Portland, OR, 1991-2000). Relative energies correspond to electronic energies at the indicated levels of theory.
  7. Bottoni, J. Org. Chem., 68, 3397 (2003)
  8. Fokin, J. Org. Chem., 65, 2984 (2000)
  9. Ruggiero, J. Chem. Soc. Perkin Trans. 2, 4, 448 (2001)
  10. Aggarwal, J. Am. Chem. Soc., 124, 5747 (2002)
  11. Aggarwal, J. Am. Chem. Soc., 127, 1642 (2005)
  12. Musker, Tetrahedron Lett., 995 (1967)
  13. Gurskii, J. Organomet. Chem., 260, 17 (1984)
  14. Aggarwal, Acc. Chem. Res., 37, 611 (2004)
  15. Kowalkowska, Eur. J. Org. Chem., 925 (2005)
  16. Maeda, J. Chem. Soc. Perkin Trans. 1, 1491 (1997)
  17. Volatron, J. Am. Chem. Soc., 109, 1 (1987)
  18. Baldwin J. E., Armstrong Major C. H., Ylide rearrangements: a [3,2]-sigmatropic process in a phosphorus ylide, 10.1039/c2970000631b
  19. Blackburn, J. Chem. Soc. Chem. Commun., 4, 186 (1968)
  20. Cose R. W. C., Davies A. M., Ollis W. D., Smith C., Sutherland I. O., Orbital symmetry control in the rearrangements of allylic sulphonium ylides, 10.1039/c29690000293
  21. Cose, J. Chem. Soc. Chem. Commun., 6, 294 (1969)
  22. Laerdahl, Int. J. Mass Spectrom., 214, 277 (2002)
  23. , , Theoretical Aspects of Physical Organic Chemistry. The SN2 Mechanism, Wiley, New York, 1992, p. 285.
  24. Mayr, Acc. Chem. Res., 36, 66 (2003)
  25. Mayr, Angew. Chem., 106, 990 (1994)
  26. Angew. Chem. Int. Ed. Engl., 33, 938 (1994)
  27. Fountain, J. Org. Chem., 62, 853 (1997)
  28. Marcus, Annu. Rev. Phys. Chem., 15, 155 (1964)
  29. Donnella, J. Am. Chem. Soc., 106, 4724 (1984)
  30. Wolfe, J. Am. Chem. Soc., 103, 7694 (1981)
  31. Chabinyc, Science, 279, 1882 (1998)
  32. Laerdahl, Org. Biomol. Chem., 1, 2935 (2003)
  33. Laerdahl, Org. Biomol. Chem., 1, 2943 (2003)
  34. Hoz, J. Am. Chem. Soc., 121, 7724 (1999)
  35. Shaik, J. Am. Chem. Soc., 104, 2708 (1982)
  36. Glukhovtsev, J. Phys. Chem., 98, 13099 (1994)
  37. Nam, Eur. J. Mass Spectrom., 9, 257 (2003)
  38. It has been noted previously that thermodynamic property of basicity correlates with leaving group ability (kinetic property): species with low basicity have high leaving group ability (see , Organic Chemistry, W. H. Freeman, New York, 1998). However, this trend is not strictly followed by the present groups: phosphines and amines have similar basicity (pKa of Et3NH+ and Et3PH+ are respectively 9.0 and 9.1 in DMSO; see
  39. D. H. Ripin and D. A. Evans pKa's table at http://daecr1.harvard.edu/pdf/evans_pKa_table.pdf) yet phosphines are much poorer leaving groups.
  40. Aggarwal, Tetrahedron Lett., 35, 8659 (1994)
  41. , Biochemistry, Wiley, New York, 1995.
  42. , Advanced Organic Chemistry Part A: Structure and Mechanisms, Plenum, New York, 1990.
Bibliographic reference Aggarwal, Varinder K. ; Harvey, Jeremy N. ; Robiette, Raphaël. On the importance of leaving group ability in reactions of ammonium, oxonium, phosphonium, and sulfonium ylides. In: Angewandte Chemie (International Edition), Vol. 44, no. 34, p. 5468-5471 (2005)
Permanent URL http://hdl.handle.net/2078/76453