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Abstract

Histone deacetylases have central functions in regulating stress
defenses and development in plants. However, the knowledge about
the deacetylase functions is largely limited to histones, although
these enzymes were found in diverse subcellular compartments. In
this study, we determined the proteome-wide signatures of the
RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative
quantification of the changes in the lysine acetylation levels was
determined on a proteome-wide scale after treatment of Arabidopsis
leaves with deacetylase inhibitors apicidin and trichostatin A. We
identified 91 new acetylated candidate proteins other than histones,
which are potential substrates of the RPD3/HDA1-like histone
deacetylases in Arabidopsis, of which at least 30 of these proteins
function in nucleic acid binding. Furthermore, our analysis revealed
that histone deacetylase 14 (HDA14) is the first organellar-localized
RPD3/HDA1 class protein found to reside in the chloroplasts and that
the majority of its protein targets have functions in photosynthesis.
Finally, the analysis of HDA14 loss-of-function mutants revealed that
the activation state of RuBisCO is controlled by lysine acetylation of
RuBisCO activase under low-light conditions.
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Introduction

Optimal plant growth and development are dependent on fine-regu-

lation of the cellular metabolism in response to environmental

conditions (Nunes-Nesi et al, 2010). During a day or a season,

plants often face rapidly changing environmental conditions such as

changes in temperature, light intensity, and water and nutrient

availability (Calfapietra et al, 2015). Due to their sessile life style,

plants cannot escape from environmental perturbations. Instead,

plants activate a variety of cellular response mechanisms that allow

them to acclimate their metabolism to the environment. Cellular

signaling networks are activated within seconds when metabolic

homeostasis is perturbed, and these networks regulate the plant’s

physiology (Dietz, 2015; Mignolet-Spruyt et al, 2016). Such signal-

ing networks regulate gene expression, translation, protein activity,

and turnover. Post-translational modifications (PTMs) of proteins

like phosphorylation, ubiquitination, methylation, and acetylation

play a pivotal role in all of these regulatory processes (Hartl &

Finkemeier, 2012; Johnova et al, 2016). Except for phosphorylation,

most of the cellular protein targets and the regulating enzymes of

these PTMs are largely unexplored in plants (Huber, 2007). Here,

we study the regulation of lysine acetylation.

Lysine acetylation is a post-translational modification (PTM),

which was first discovered on histone tails where it is now known

to regulate chromatin structure and gene expression (Allfrey et al,

1964). The transfer of the acetyl group to lysine neutralizes the posi-

tive charge of the amino group, which can affect the biological func-

tion of proteins such as enzyme activities, protein–protein, and

protein–DNA interactions (Yang & Seto, 2008). Acetyl-CoA serves as
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substrate for lysine acetylation in an enzymatic process catalyzed by

different types of lysine acetyltransferases (KATs) (Kleff et al, 1995;

Parthun et al, 1996; Yuan & Marmorstein, 2013; Drazic et al, 2016).

However, lysine acetylation can also occur non-enzymatically espe-

cially at a cellular pH higher than eight (Wagner & Payne, 2013;

König et al, 2014a); a level that can be reached during active respi-

ration in the mitochondrial matrix, as well as in the chloroplast

stroma during photosynthesis (Hosp et al, 2016). Non-enzymatic

acetylation is of particular abundance in bacteria, which addition-

ally contain the highly reactive acetyl-phosphate as metabolite

(Weinert et al, 2013). In plants, many organellar proteins from

mitochondria and chloroplasts were previously identified as lysine-

acetylated (Finkemeier et al, 2011; Wu et al, 2011; König et al,

2014a; Nallamilli et al, 2014; Smith-Hammond et al, 2014; Fang

et al, 2015; He et al, 2016; Hosp et al, 2016; Xiong et al, 2016;

Zhang et al, 2016; Zhen et al, 2016).

Lysine acetylation can be reversed by lysine deacetylases

(KDACs), which were named histone deacetylases (HDA/HDAC)

before the more recent discovery of non-histone protein acetyla-

tion. KDACs can be grouped into three different families: (i)

reduced potassium dependency 3/histone deacetylase 1 (RPD3/

HDA1)-like, (ii) HD-tuins (HDT), and (iii) silent information regu-

lator 2 (Sir2) (Pandey et al, 2002; Alinsug et al, 2009; Shen et al,

2015). While the RPD3/HDA1 family has primarily been found in

eukaryotes, the Sir2-type deacetylases also occur in bacteria, and

the HDT-type deacetylases only occur in plants. The Arabidopsis

genome encodes 18 KDACs from the three different families. The

largest family comprises the RPD3/HDA1-like with 12 genes, four

genes belong to the HDTs and two to the Sir2 family. The RPD3/

HDA1 family can be further subdivided into class I (RPD3-like),

class II (HDA1-like), and class IV KDACs, of which Arabidopsis

possesses 6, 5, and 1 putative members, respectively (Pandey et al,

2002; Alinsug et al, 2009; Shen et al, 2015). Numerous studies

have characterized different genes from the Arabidopsis KDAC

families over the last two decades (Shen et al, 2015). In particular,

HDA6, HDA9, and HDA19 from class I are the most well studied

Arabidopsis KDACs and they have been implicated in many impor-

tant developmental processes such as seed germination, flowering

time, as well as plant hormone-related stress responses (Zhou

et al, 2005; Benhamed et al, 2006; Chen et al, 2010; Choi et al,

2012; Cigliano et al, 2013; Zheng et al, 2016; Mengel et al, 2017).

In terms of protein targets for deacetylation, very little is known

about the preferences and targets of the different plant KDACs.

While Arabidopsis sirtuin 2 deacetylates selected mitochondrial

proteins such as the ATP/ADP carrier (König et al, 2014b), mainly

histone H3 and H4 deacetylation has been studied for the other

two families of KDACs (Shen et al, 2015).

Here, we report the first comprehensive profiling of putative

Arabidopsis KDAC targets by using two different inhibitors of the

RPD3/HDA1 family. By this approach, we identify several hereto-

fore-unknown potential targets of the Arabidopsis KDACs in the

nucleus and other subcellular localizations including plastids.

Additionally, by the use of a peptide-based KDAC-probe, we were

able to identify the first KDAC of the RPD3/HDA1 family, which is

active in organelles and regulates the activity and activation state

of ribulose-1,5-bisphosphate-carboxylase/oxygenase, the key

enzyme in photosynthetic CO2 fixation, and the most abundant

protein on earth.

Results

The Arabidopsis leaf lysine acetylome 2.0

The first two lysine acetylomes of Arabidopsis leaves were reported

in 2011, with only around 100 lysine acetylation sites identified

(Finkemeier et al, 2011; Wu et al, 2011). Tremendous advances in

mass spectrometry, improvements in antibody reagents, and the

optimization of the overall protocol now allows a more in-depth

profiling of the Arabidopsis lysine acetylome. To be able to quantify

acetylome changes upon KDAC inhibitor treatment, we applied an

isotopic dimethyl-labeling approach to differentially label two dif-

ferent protein samples (e.g., treatment and control), combined with

an enrichment strategy for lysine-acetylated peptides (Fig 1A). For

this procedure, proteins extracted from leaves were processed and

trypsin-digested via filter-assisted sample preparation. Peptides were

isotopically dimethyl-labeled, and samples for comparison were

pooled. For proteome quantifications, samples were collected at this

step and the rest of the sample was further processed by hydrophilic

interaction liquid chromatography fractionation to reduce the

peptide complexity. Six to seven fractions were collected and used

for immuno-affinity enrichment using anti-acetyllysine agarose

beads. Peptides were further processed for high-resolution mass

spectrometry, and MaxQuant was used for the data analysis.

Altogether the datasets presented here comprise 2,152 lysine

acetylation sites (localization probability > 0.75) on 1,022 protein

groups (6,672 identified protein groups in total, Table 1, Datasets

EV1–EV5)—this corresponds to 959 novel acetylated proteins and

2,057 novel acetylation sites when compared to the previously

published datasets for Arabidopsis (Finkemeier et al, 2011; Wu

et al, 2011; König et al, 2014a). A MapMan functional annotation

analysis (Thimm et al, 2004) was used for the classification of the

lysine-acetylated proteins, applying the TAIR mapping and selecting

all identified proteins of the proteome analysis as background popu-

lation. From the different cellular processes, the functional cate-

gories photosynthesis, tetrapyrrole synthesis, gluconeogenesis,

redox, TCA cycle, as well as DNA and RNA regulation of transcrip-

tion were identified as overrepresented as determined by a Fisher’s

exact test, while processes such as hormone metabolism, cell wall,

and secondary metabolism were underrepresented (Fig 1B, at 5%

FDR and a 1.5-fold enrichment/depletion cut-off). Based on the

classification of localization of proteins using SUBA consensus

(Heazlewood et al, 2007), proteins from plastids and nucleus were

clearly overrepresented, while proteins from endoplasmic reticulum,

vacuole, mitochondrion, plasma membrane, and extracellular space

were significantly underrepresented in our dataset (Fig 1C).

Additionally, we analyzed the local sequence context around the

acetylation sites using iceLogo (Maddelein et al, 2015) in combina-

tion with the Arabidopsis TAIR10 database with all identified

proteins as background reference (Fig 1D). Overall, negatively

charged amino acids, such as glutamate and aspartate, were signifi-

cantly enriched in the �1, �2, �3 as well as +1 positions surround-

ing the lysine acetylation site. In more distant positions, lysine

residues were the most strongly enriched on either side of the lysine

acetylation site. The sequence motif surrounding the lysine acetyla-

tion site appeared different depending on the subcellular localiza-

tion of the respective proteins. For example, the negatively charged

amino acids were more prominent on cytosolic and plastidial
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Figure 1. Proteome-wide identification and classification of the Arabidopsis thaliana lysine acetylome.

A Experimental overview.
B, C Functional classification and subcellular localization of identified lysine-acetylated proteins. Lysine-acetylated proteins identified over all experiments were

classified according to MapMan categories and SUBA4 localization information, respectively. Over- or underrepresentation of categories was determined using a
Fisher’s exact test with all proteins identified at 1% FDR as background population. Blue and red arrows mark categories significantly enriched at 5% FDR
(Benjamini–Hochberg) and a 1.5-fold-change cut-off.

D Sequence logos for all lysine acetylation sites with all proteins identified as background population (sequence logos were generated using iceLogo, Maddelein et al, 2015).
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proteins in comparison with nuclear proteins, as well as the pres-

ence of a phenylalanine at position �2. Tyrosine at position +1 was

found on cytosolic and plastid proteins, while phenylalanine at posi-

tion +1 was only found enriched on cytosolic proteins. Interestingly,

on the nuclear sequence motifs only positively charged amino acids

were found at position +1 as well as generally more neutral amino

acids such as glycine and alanine at positions �1 to �3, which are

dominating on histone sequence motifs (Fig 1D).

Since 43% of all identified lysine-acetylated proteins are putative

plastid proteins, we further analyzed the distribution of those

proteins and number of acetylation sites in photosynthesis (Fig 2).

About 24% of the proteins from the photosynthetic light reactions

were acetylated on at least four lysine residues (Fig 2A). Proteins

from the light harvesting complexes (LHC) of both PSII and PSI

were heavily acetylated with 29 lysine acetylation sites on LHCII

and 16 on LHCI proteins (Fig 2A). All enzyme complexes involved

in the carbon fixing reactions (Calvin–Benson cycle) as well as

RuBisCO activase (RCA) contained four or more lysine acetylation

sites. With 18 lysine acetylation sites, the large subunit of RuBisCO

was the most heavily modified of all the proteins (Fig 2B).

Identification of novel lysine acetylation sites targeted by
Arabidopsis RPD3/HDA1-type KDACs

Different types of lysine deacetylase inhibitors have been developed

in the past decade, which are widely used to modulate the activities

of human KDACs in diseases (Newkirk et al, 2009). Here, we

selected two commonly used KDAC inhibitors, apicidin and tricho-

statin A (TSA), to target the RPD3/HDA1-type family of KDACs and

to profile their potential protein substrates. While apicidin was

shown to specifically inhibit class I KDACs, TSA was described as a

general inhibitor of class I and class II KDACs in HeLa cells (Scholz

et al, 2015). For inhibitor treatment, Arabidopsis leaf strips were

infiltrated either with a mock control or with 5 lM apicidin and

5 lM trichostatin A (TSA), respectively. Experiments were

performed in three independent biological replicates, and the leaf

strips were incubated for 4 h in the light before harvest. The protein

intensities of the biological replicates had a Pearson correlation coef-

ficient of > 0.87–0.98 (Appendix Fig S1), which indicates the robust-

ness of the approach. Site-specific acetylation changes were

quantified (Fig 3A and B) in addition to changes on total proteome

level as control (Fig 3C and D). No significant changes in the regula-

tion of protein abundances were observed after the inhibitor

treatments, which covered about 67–88% of proteins carrying the

identified acetylated sites (Appendix Fig S2). However, the whole

proteome analysis did not cover very low abundant proteins without

enrichment. Therefore, we cannot exclude that the other sites, for

which we were not able to quantify protein ratios, were not regu-

lated due to bona fide stoichiometry differences from inhibited

KDAC activity. However, we restricted inhibitor treatment to 4-h

incubation time in order to minimize potential changes in protein

abundances that might result from KDAC-dependent alterations in

gene expression.

For apicidin treatment, 832 lysine acetylation sites were quanti-

fied, of which 148 were significantly regulated according to a

LIMMA statistical analysis with a FDR cut-off < 5% (Fig 3A; Dataset

EV1). As expected for a KDAC inhibitor treatment, most of the

lysine acetylation sites (136 in total) were up-regulated (log2-FC

0.4–7.4) after apicidin treatment. The 12 down-regulated lysine

acetylation sites comprise mainly multiply acetylated peptides for

which peptide variants of lower acetylation status show a down-

regulation of particular sites, whereas the corresponding peptide

with higher acetylation status shows up-regulation in comparison.

Interestingly, while the overall 832 lysine acetylation sites were

detected on proteins from various subcellular compartments, 139 of

the regulated lysine acetylation sites were found on proteins exclu-

sively localized to the nucleus, such as histones, HATs, proteins

involved in the regulation of transcription and signaling (G-protein

and light signaling), DNA-repair and cell cycle, as revealed from a

SUBAcon analysis (Dataset EV1). Three up-regulated lysine acetyla-

tion sites were detected on plastidial proteins including proteins

involved in the light reactions (K99, PSAH-1; PSAH-2 log2-FC 0.43)

as well as in the Calvin–Benson cycle (K305, SBPase, log2-FC 0.61).

Looking at a less stringent P-value cut-off < 0.05 (Fig 1B), 182

lysine acetylation sites were found up-regulated of which 29 were

found on organellar proteins. While most of these 29 lysine acetyla-

tion sites occur on proteins from the plastids, they only show a

rather small increase in acetylation level (log2-FC 0.2–0.8) (Dataset

EV1).

After TSA treatment, only 37 sites of the 385 quantified lysine

acetylation sites were significantly up-regulated with an FDR < 5%

(log2-FC 1.4–6.1) (Fig 3B, Dataset EV2). This low number of regu-

lated sites, compared to apicidin treatment, was mainly due to a

higher variability in the biological replicates of the TSA treatment.

Of the 37 up-regulated lysine acetylation sites, only one was

detected on a protein with a plastidial localization (K165,

Table 1. Summary of identified features.

Whole proteome analysis Acetyllysine-containing

Experiment Description Protein groups Peptides Protein groups Peptides Sites

1 Apicidin versus Ctrl 2,384 11,188 538 1,064 1,041

2 TSA versus Ctrl 5,107 32,809 493 1,002 930

3 hda14 versus WT 2,889 13,755 545 1,133 920

4 hda14 versus WT low-light 4,138 27,835 367 756 700

5 hda14 versus WT thylakoids 2,904 15,064 237 592 546

Total 6,672 47,338 1,022 2,405 2,152

Filters applied: 1% FDR at PSM and protein level, score for modified peptides ≥ 35, delta score for modified peptides ≥ 6, acetyllysine site localization probability
≥ 0.75; contaminants removed.
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At3g17930, log2-FC 3.6). Analyzing the data with a less stringent P-

value cut-off (P < 0.05) resulted in 72 up-regulated lysine acetyla-

tion sites with an average log2-FC of 0.8–6. Among those were two

more plastidial proteins, the RCA b1-isoform (K438, log2-FC 1.37)

and PSAD-1/2 (K187/K191, log2-FC 1.77). Among the common

nuclear targets of apicidin and TSA were several histone proteins. In

total, 19 regulated lysine acetylation sites were found on histone 2A

(H2A) and histone 2B (H2B) proteins. On HTB1 two different lysine

acetylation sites were specifically and strongly (log2FC at least 2)

up-regulated either upon apicidin (K39, K40) or TSA (K28, K33)

inhibition (Appendix Fig S3, Dataset EV1A, Dataset EV2A). The

same was true for other histones of the H2B family (HTB9, HTB2),

A

B

Figure 2. Overview of lysine-acetylated proteins in the light reactions (A) and the Calvin–Benson cycle (B) identified in this study in Arabidopsis.

A, B The classification of proteins into functional bins was performed using MapMan (Thimm et al, 2004). Color code: proteins not identified in the LC-MS/MS analyses
(white), proteins without identified lysine-acetylated sites (gray), and proteins with one (yellow), two (orange), three (dark orange), or four or more acetylation sites
(red). For the Calvin–Benson cycle, each box indicates a separate Arabidopsis AGI identifier as indicated in Dataset EV6. Cytb6f, cytochrome b6f; FBPase, fructose-1,6-
bisphosphatase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; PPE, phosphopentose epimerase; PPI, phosphopentose
isomerase; PRK, phosphoribulokinase; PSII, photosystem II; PSI, photosystem I; RuBisCO, ribulose-1,5-bisphosphate-carboxylase/oxygenase; SBPAse, seduheptulose-
1,7-bisphosphatase; TPI, triose phosphate isomerase; TK, transketolase. A template of the light-reaction schematic was kindly provided by Jon Nield and modified.
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which also showed unique up-regulated sites depending on the inhi-

bitor used. Interestingly, histones of the H2A family showed the same

up-regulated lysine acetylation sites upon apicidin and TSA treatment.

Overall, between apicidin and TSA treatment, there was an overlap of

25 protein groups (P-value < 0.05), which showed enhanced lysine

acetylation sites after both treatments (Dataset EV1A, Dataset EV2A).

The KDAC inhibitor study revealed that most of the RPD3/HDA1

classes KDACs of Arabidopsis have their potential substrate proteins

in the nucleus, but that some members also seem to have their targets

in other subcellular compartments, such as the plastids.

HDA14 is the first member of a RPD3/HDA1-family protein to be
localized in organelles

Members of the RPD3/HDA1 family are usually localized in the

nucleus and/or in the cytosol. Here, we had clear indications that

proteins targeted to the chloroplast were found hyper-acetylated

upon inhibitor treatment. However, it was not clear whether the

hyper-acetylation already occurred due to KDAC inhibition in the

cytosol during transit of the proteins to the plastid or whether there

exists a plastid-localized member of the RPD3/HDA1-class. Since

KDACs are low abundant proteins, they are usually not detected in

leaf proteomes and therefore need to be enriched before detection.

Here, we used a recently developed peptide-based KDAC-probe,

mini-AsuHd (Dose et al, 2016), to pull-down active RPD3/HDA1-

class KDACs from leaf extracts and isolated chloroplasts, respec-

tively, in comparison with the mini-Lys probe as background

control (Table 2). The mini-AsuHd probe contains a hydroxamate

moiety spaced with five carbon atoms to the peptide backbone,

which chelates the catalytic Zn2+ ion of RPD3/HDA1 family-HDACs

with nanomolar affinities (Dose et al, 2016). The mini-Lys probe

contains a lysine residue instead. Three different Arabidopsis

KDACs were identified in total leaf extracts (HDA5, 14, 15), while

in isolated chloroplasts, only HDA14 was identified (Table 2).

Although HDA14 contains a predicted target sequence for plastids, it

was reported to be localized in the cytosol in a previous study (Tran

et al, 2012). To confirm the plastid localization of HDA14, we fused

GFP to the C-terminus of the HDA14 protein, instead of the

N-terminus as in the previous study. Protoplasts of the stable trans-

formed 35S:HDA14:GFP plants showed that the signal of the HDA14:

GFP fusion protein was overlapping with the autofluorescence of

the chlorophyll, as well as with a TMRM signal which visualizes

A B

C D

Figure 3. Differential lysine acetylation and protein expression in Arabidopsis leaves after inhibitor treatment.

A–D Vacuum infiltration of leaf strips with solutions containing either of the two deacetylase inhibitors apicidin (A, C) or trichostatin A (B, D) versus a buffer control for
4 h leads to differential accumulation of lysine acetylation sites. Volcano plots depict lysine acetylation site ratios (A, B) or protein ratios (C, D) for inhibitor
treatment versus control, with P-values determined using the LIMMA package. Orange, protein with nuclear localization according to SUBA4 database. Blue,
proteins with lysine acetylation sites identified. Dashed lines indicate significance thresholds of either uncorrected P-values < 5% or Benjamini–Hochberg corrected
FDR < 5%. A missing line indicates that the significance threshold was not reached by any of the data points.
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mitochondria (Fig 4A). Hence, these results indicate a dual localiza-

tion of HDA14 in mitochondria and chloroplasts. To further confirm

the results, we performed a Western blot analysis with HDA14

antiserum on proteins from isolated chloroplasts and mitochondria

from WT and stably expressing 35S:HDA14:GFP seedlings and

detected the endogenous HDA14 as well as the HDA14-GFP fusion

protein in the chloroplast stroma as well as in mitochondria

(Appendix Fig S4).

HDA14 is a functional lysine deacetylase and is mainly inhibited
by TSA in vitro

We produced a recombinant N-terminally His-tagged HDA14

protein, which lacks the first 45 amino acids of the predicted N-

terminal signal peptide (Appendix Fig S5), to investigate the

predicted KDAC activity of HDA14. The activity of the purified

protein was tested in a colorimetric assay based on the deacetylation

of a synthetic acetylated p53 peptide coupled to a chromophore

(Dose et al, 2012). Using this assay, a deacetylase rate of 0.05/s

(� 0.0032) was calculated for His-HDA14 at 100 lM substrate,

which is active with both Zn2+ or Co2+ as cofactors (Fig 4B).

Recent publications have shown that recombinant human HDAC8 is

more active when the catalytic Zn2+ is replaced by Co2+ (Gantt

et al, 2006). However, this is not the case for HDA14, but the

enzyme is also active with Co2+. Interestingly, apicidin acted only

as a weak inhibitor for HDA14 even at concentrations of 100 lM. In

contrast, TSA inhibited its activity by 80% at a concentration of

5 lM, the same concentration used in the leaf strip inhibitor

experiments.

HDA14 regulates lysine acetylation levels of plastid proteins
related to photosynthesis

To analyze the in vivo function of HDA14, a knock-out line (hda14)

was obtained (Appendix Fig S6) and changes in lysine acetylation

site and protein abundances between hda14 and WT leaves were

compared (Fig 5A–F). In total, 832 lysine acetylation sites were

identified and quantified from leaves under normal light conditions

(Fig 5A; Dataset EV3), and a further 425 lysine acetylation sites

were identified from isolated thylakoids (Fig 5B, Dataset EV4),

presumably associated with photosynthetic membrane proteins.

While no major changes in protein abundances and plant growth

were detected for hda14 in comparison with WT (Fig 5D–F,

Appendix Fig S6), 26 lysine acetylation sites on 26 protein groups

were increased in between twofold and 80-fold in abundance in the

mutant with a FDR < 5%. All of these lysine acetylation sites were

detected on proteins localized in the plastid. Another 137 lysine

acetylation sites from 122 protein groups were found significantly

up-regulated in the mutant but with a lower confidence level

Table 2. KDAC pull-down with mini-AsuHd probe.

Majority
protein IDs Name Peptides

MS/MS
count

Log2-LFQ
CP AsuHd

Log2-LFQ
CP Lys

Log2
enrichment
CP

Log2-LFQ
LF AsuHd

Log2-LFQ
LF Lys

Log2
enrichment
LF

AT5G61060.1/.2 HDA5 6 11 n.d. n.d. n.d. 24.50 � 0.12 n.d. > 7a

AT4G33470.1 HDA14 7 22 24.74 � 1.83 19.54 � 0.05 5.2 26.20 � 0.2 21.12 � 0.49 5.1

AT3G18520.1/2 HDA15 2 2 n.d. n.d. n.d. 20.84 � 0.08 n.d. > 3a

ATCG00490.1 RBCL 28 545 33.65 � 0.36 33.73 � 0.13 �0.1 33.91 � 0.09 33.75 � 0.03 0.2

Selected proteins identified and quantified in pull-downs by LC-MS/MS analysis. Protein abundances are expressed as label free quantification (LFQ) values.
Numbers indicate mean log2-transformed LFQ values from two biological replicates of Arabidopsis leaves (LF) and isolated chloroplasts (CP). Mini-Lys probes were
used as pull-down controls to calculate relative enrichments of proteins. LFQ values for RuBisCO are indicated in all samples as background control.
aEstimated enrichment factor assuming a minimum Log2-LFQ threshold of 17.

A

B

Figure 4. HDA14 protein localizes to the chloroplasts and mitochondria
in Arabidopsis, and its activity is dependent on cofactors and can be
inhibited by deacetylase inhibitors.

A GFP localization (green) of the HDA14-GFP fusion constructs in Arabidopsis
protoplasts (35S:HDA14:GFP) from stable transformants. The mitochondrial
marker TMRM is depicted in purple. GFP+TMRM shows the overlay image
of 35S:HDA14:GFP and TMRM, AF indicates the chlorophyll autofluorescence
and BF the bright-field image of the protoplast. GFP+AF+TMRM represents
the overlay image of the three fluorescence channels. Scale bar: 10 lm.

B Deacetylase activity of the recombinant 6xHis-HDA14 protein using a
colorimetric assay. Co2+ and Zn2+ were used as cofactors, apicidin (100 lM)
and trichostatin A (5 lM) as deacetylase inhibitors (n = 5, � SD).
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(P < 0.05). Of these 137 up-regulated lysine acetylation sites, 35

were uniquely identified in the thylakoid fraction and 13 sites were

detected in both pull-downs. More than 90% of these proteins are

annotated as plastid-localized and are involved in several biochemi-

cal processes according to a MapMan analysis (Thimm et al, 2004).

While around 30% of the proteins have unknown functions, 24%

are involved in photosynthesis, 12% in protein synthesis, degrada-

tion, and assembly, and around 5% each in lipid metabolism, redox

regulation, regulation of transcription, and tetrapyrrole synthesis, as

well as 1–3% each are involved in nucleotide metabolism, cell divi-

sion, ABC transport, secondary metabolism, signaling, organic acid

transformation, and amino acid metabolism. Eight of the HDA14

potential target proteins are encoded in the plastome, which further

indicates that the deacetylation reaction is occurring within the

chloroplast stroma. Among the eight plastome-encoded proteins

affected in their acetylation status by the absence of HDA14, the

alpha and beta-subunit of the ATP-synthase as well as several

photosystem proteins, including the PSII reaction center protein D

and the PSI PsaA/PsaB protein, were identified. These results

provide a further indication that HDA14 has a regulatory role in

photosynthesis.

The regulation of photosynthesis by post-translational modifi-

cations such as phosphorylation and redox regulation is known to

be of major importance at low light intensities, for example, during

dawn and sunset, when the Calvin–Benson cycle becomes gradually

activated or inactivated, respectively, due to changes in stromal pH,

ATP, and NADPH levels (Carmo-Silva & Salvucci, 2013; Buchanan,

2016). Hence, we analyzed the acetylation status of the hda14 plants

in comparison with WT after the plants were transferred from

normal light (100 lmol quanta m2/s) to low light (20 lmol quanta

m2/s) intensities for 2 h. Under these conditions, 36 lysine acetyla-

tion sites on 32 protein groups showed a significant increase

(P < 0.05, 2 to 100-fold), while the total protein abundances of these

proteins were unchanged (Fig 5C and F, Dataset EV5). Twenty-six

of these proteins are predicted to be localized in plastids. The

MapMan analysis revealed that the biological process

A B C

D E F

Figure 5. Differential lysine acetylation and protein expression in hda14 versus wild-type leaves under normal light (A, D), in isolated thylakoids (B, E), and
under low-light conditions (C, F).

A–F Volcano plots depict lysine acetylation site ratios (A–C, top row) or protein ratios (D–F, bottom row) for mutant versus control, with P-values determined using the
LIMMA package. Orange, protein with nuclear localization; green, protein with plastidial localization; purple triangles, proteins of the Calvin–Benson (CB) cycle; blue
diamonds (top row), proteins of the light reaction; localization information according to SUBA4 database. Blue circles (bottom row), proteins with lysine acetylation
sites identified. Dashed lines indicate significance thresholds of either uncorrected P-values < 5% or Benjamini–Hochberg corrected FDR < 5%. A missing FDR line
indicates that the 5% threshold was not reached by any of the data points.
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photosynthesis is significantly enriched among those regulated

proteins, including RCA (K368/K438, log2-FC 5.89/4.85) as a master

regulator of Calvin–Benson cycle activity and RuBisCO large subunit

(K474, log2-FC 1.96) itself. RuBisCO catalyzes the carboxylation or

alternatively oxygenation of ribulose-1,5-bisphosphate as the first

step in either the Calvin–Benson cycle or photorespiration, and

thereby enables the photoautotrophic lifestyle of plants. The

RuBisCO enzyme is activated by carbamylation of the active site, a

process that is dependent on pH, Mg2+-ions and requires the

removal of sugar-phosphate inhibitors that otherwise block the

active site (Portis et al, 2008). The removal of these inhibitors

requires specific conformational changes to RuBisCO that are

induced by RCA, a AAA+-ATPase enzyme. RCA is composed of

redox-active alpha isoforms as well as redox-inactive beta-isoforms

in Arabidopsis (Carmo-Silva & Salvucci, 2013). The RCA activity

itself is inhibited under low light by rising ADP concentrations and

remains inactive until the photosynthetic electron transport chain

again raises the ATP/ADP ratio in response to higher irradiance. The

RuBisCO activation state or initial activity, that is, the percentage of

active sites free to perform catalysis, as well as total potential activ-

ity can be measured by rapid leaf protein extractions (Carmo-Silva

et al, 2012). Hence, we determined the RuBisCO activity as well as

the RuBisCO activation state of the hda14 plants compared to WT.

The results clearly demonstrate that the RuBisCO initial as well as

total activity is significantly increased in the hda14mutant compared

to WT (Fig 6A). While the total activity was increased on average by

around 30%, the initial activity was more than doubled in hda14

compared to WT (Fig 6A), leading to a significantly 90% increased

RuBisCO activation state in the mutant under low light (Fig 6B).

Since the lysine acetylation site K438 of the RCA b1-isoform was

also found increased after TSA treatment (but not K368), we

performed a site-directed mutagenesis on this site in a N-terminally

His-tagged RCA-b1 protein. Lysine 438 was exchanged to glutamine

(K438Q) and arginine (K438R) to mimic and abolish the lysine acety-

lation status, respectively. The ATPase activities of the purified

mutant RCA proteins were compared to the unmodified WT-like

RCA-b1 protein (Fig 6C). Strikingly, the total activity of the K438Q

mutant was not affected by this mutation, while the replacement of

lysine to arginine led to a strongly diminished enzyme activity. Under

low-light conditions, the increase in plastid ADP level plays an impor-

tant role in the regulation of the RCA activity. Hence, we tested the

level of ADP inhibition on the three RCA variants. While the WT-like

isoform was inhibited by nearly 19% at an ATP:ADP ratio of 0.11, the

activity of the K438Q mutant was only inhibited by about 8%. The

K438R mutant, which mimics the non-acetylated state, showed an

even stronger ADP inhibition of about 30% under these conditions

(Fig 6C). Taken together, the results from this experiment further

support that lysine acetylation at K438 leads to a higher RCA and thus

RuBisCO activity under low light as observed in the hda14mutant.

Discussion

KDACs have important functions in plant development and accli-

mation of plants to environmental stresses (Shen et al, 2015). So

far, these enzymes have mainly been studied with respect to their

deacetylase function on histones in plants, despite the large

number of different types of lysine-acetylated proteins detected in

A B C

Figure 6. RuBisCO activity and RuBisCO activation state are increased in the hda14 mutant under low-light conditions.

A RuBisCO initial and total activity in WT and hda14 in low-light-treated plants. Initial activity was measured directly upon extraction. For the total activity, samples
were incubated with H2CO3 for 3 min to fully carbamylate the active site of RuBisCO (n = 10, *P < 0.05, t-test).

B RuBisCO activation state (P < 0.05, t-test).
C ATPase activity of recombinant 6x-HisRCAb1 WT, K438Q and K438R with ATP and ADP/ATP = 0.11, respectively (n = 3, *P < 0.05, +P < 0.1, t-test). Percentage values

on top indicate percent ADP inhibition.

Data information: Boxes indicate lower and upper quartiles of data and whiskers indicate highest and lowest values. Small circles represent outliers. The bars across
boxes indicate median values.
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recent years (Hosp et al, 2016). In this work, we studied the

proteome-wide putative targets of the RPD3/HDA1 class of lysine

deacetylases in Arabidopsis by relative quantification of the

changes in the lysine acetylome after inhibitor treatment of

Arabidopsis leaves with apicidin and TSA. In total, we detected

2,152 lysine acetylation sites in 4-week-old Arabidopsis leaves

when combining all experiments included in this study. The lysine

acetylation sites were found on 1,022 protein groups from all dif-

ferent subcellular compartments and compartment-specific amino

acid motifs surrounding the lysine acetylation sites were detected.

Similar to human and Drosophila sequence motifs, glutamic acid

and glycine can be frequently found at position �1 next to the

lysine acetylation site also in Arabidopsis, while tyrosine, pheny-

lalanine, but not proline, are also enriched in the Arabidopsis

motifs at position +1, but with a lower frequency (Choudhary

et al, 2009; Weinert et al, 2011). Generally, the acetylated lysines

also occur in lysine-rich regions in Arabidopsis similar to those

described for human and fly (Weinert et al, 2011).

In HeLa cells, apicidin was identified as an inhibitor of mainly

the RPD3-like KDACs, while TSA inhibits enzymes from both RPD3/

HDA1 classes (Scholz et al, 2015). Although we cannot exclude that

apicidin and TSA have different specificities for Arabidopsis KDACs

compared to humans, we observed that recombinant Arabidopsis

HDA14, which is a HDA1-like KDAC, is not efficiently inhibited by

apicidin but by TSA. This supports the notion that similar speci-

ficities of both inhibitors exist for the Arabidopsis KDACs as well. In

Arabidopsis, four KDACs belong to the RPD3-like group, including

HDA1/19, HDA6, HDA7, and HDA9 (Hollender & Liu, 2008). Two

additional KDAC genes, HDA10 and HDA17, are closely related to

HDA9, but the predicted proteins lack a catalytic domain and there-

fore are probably inactive. Lysine acetylation sites on 91 protein

groups were significantly (P < 0.05) up-regulated after apicidin

treatment and are therefore most likely substrates of at least one of

these four KDACs. The dominant nuclear localization among these

proteins fits to the observed localizations of the RPD3-like KDACs in

the nucleus. While HDA1/19, HDA6, and HDA9 were detected

mainly in the nucleus, the localization of HDA7 has yet to be deter-

mined. Although the predicted HDA7 protein contains both a

nuclear localization sequence as well as a nuclear export signal, it is

unclear to what extent this protein is active due to its low expres-

sion level in most tissues.

From the 91 target protein groups identified upon inhibition with

apicidin, only 14 are histone-like proteins. Hence, we identified 77

new candidate protein groups, which are potential substrates of the

RPD3-like KDACs in Arabidopsis. This list of potential target

proteins with the exact information on their acetylation sites can be

regarded as valuable resource for future studies on the KDAC func-

tions in plant stress response and development. Interestingly, a high

mobility group box protein with ARID/BRIGHT DNA-binding

domain (At1g76110) was identified as one of the substrate proteins,

which was also regulated upon TSA treatment. These types of

proteins have been identified as interaction partners of human

HDAC1/2 (Joshi et al, 2013). Furthermore, a physical interaction

was previously detected between Arabidopsis HDA6 and the histone

H3.3 (At4g40030) (Earley et al, 2006). We identified several

peptides of histone H3-like proteins that were up-regulated by more

than 2-fold at the positions K9, 14, 18, 23, 27, 36, and 37 after

apicidin treatment, but less so after treatment with TSA. Several of

these lysine acetylation sites on histone H3 are of great importance

for chromatin regulation and remodeling [e.g., (Mahrez et al,

2016)]. For example, H3K9 acetylation was found to be associated

with actively transcribed genes and has a strong impact on various

developmental processes in plants (e.g., Ausı́n et al, 2004;

Benhamed et al, 2006). Differences in the strength of TSA and

apicidin inhibition could be explained by differences in the uptake

of the inhibitors into the Arabidopsis cells, as well as by differences

in the Ki values of the different Arabidopsis KDACs for these chemi-

cals. Furthermore, our data indicate that TSA might not be effec-

tively taken up into plastids, since the recombinant HDA14 protein

was strongly inhibited by TSA, but only few plastid proteins were

affected by TSA treatment of Arabidopsis leaves.

In addition to the many new KDAC inhibitor target proteins in

the nucleus, there were also several interesting candidate proteins

identified in the cytosol, such as the FRIENDLY protein

(At3g52140), which is required for correct distribution of mitochon-

dria within the cell. In a previous study, we already demonstrated

that two lysine sites, which can be acetylated, regulate FRIENDLY

function (El Zawily et al, 2014).

After TSA treatment, lysine acetylation sites from unique protein

groups were regulated, which were not affected by apicidin treat-

ment, indicating that those sites are specifically regulated by HDA1-

type HDACs. These proteins included RCA-b1, photosystem I

subunit D-2, ribosomal L6 family protein, S-adenosyl-L-methionine-

dependent methyltransferases superfamily protein, the telomere

repeat binding factor 1, and a histone H2B protein (Dataset EV2).

Candidates of KDAC proteins from the HDA1-type group that might

be responsible for the regulation of the lysine acetylation sites of

these proteins include HDA5, 8, 14, 15, and 18, which cluster

together with the human class 2 KDACs (Alinsug et al, 2009). By

using a hydroxamate-based KDAC-probe, which allows the enrich-

ment of active RPD3/HDA1-class KDACs from protein extracts, we

were able to detect HDA5, 14, and 15 in total leaf extracts of

4-week-old Arabidopsis leaves. By using the same probe, we previ-

ously enriched all class 1 and class 2b KDACs from HeLa cells, indi-

cating that the probe is able to bind all types of RPD3/HDA1-class

KDACs (Dose et al, 2016). Hence, we conclude that HDA5, 14, and

15 are the most abundant KDACs in Arabidopsis leaves. Strikingly,

both TSA and apicidin treatment resulted in an increased acetylation

of plastid proteins involved in photosynthesis. Here, we identified

HDA14 as the first organellar-localized RPD3/HDA1 class protein

which is active as a KDAC and which has the majority of its candi-

date target proteins in the plastid stroma. At the concentration of

apicidin used in our study, HDA14 was not significantly inhibited in

its activity, which further supports the observation that apicidin

mainly inhibits RPD3-like KDACs. Hence, the plastid target proteins,

which showed mildly increased lysine acetylation after apicidin

treatment, might be regulated by an unknown RPD3-like deacety-

lase. For example, we identified six lysine acetylation sites on the

TROL protein, which is required for anchoring the ferredoxin-NADP

reductase (FNR) to the thylakoid membranes and to sustain efficient

linear electron flow in the light reactions of photosynthesis. While

K328 and K348 of TROL were more than twofold increased in their

acetylation level in the hda14 loss-of-function mutant, only K337

showed a 1.2-fold increased acetylation after apicidin treatment.

Lysine acetylation sites on FNR itself were not significantly regu-

lated upon KDAC inhibition. Here, we identified four lysine
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acetylation sites on both FNR1 (K287, 290, 321, 325) and FNR2

(K90, 243, 299, 330) isoforms, of which only two have been previ-

ously reported (Lehtimaki et al, 2014).

By analyzing the acetylome of hda14 mutants, we were able to

identify the unique substrate proteins of HDA14. HDA14 was previ-

ously identified as a nuclear/cytosolic protein based on enrichment

in the microtubule fraction of a red fluorescent-tagged version of the

protein (Tran et al, 2012). However, the N-terminal location of this

tag would hinder the protein from entering the chloroplast. More-

over, the authentic N-terminus of HDA14 contains a clear signal

sequence for the plastids as predicted by bioinformatical analysis

(Alinsug et al, 2009). By using the Asu-Hd probe on isolated plastid

fractions as well as by using C-terminal GFP-tagged fusion proteins,

we were able to confirm the predicted plastid localization of

HDA14. Furthermore, most of the candidate HDA14 substrate

proteins identified reside in the plastids and are involved in metabo-

lism and photosynthesis.

With the analysis of the HDA14-dependent acetylome, we found

that the RCA-b1 site K438 is a substrate site of HDA14. Increased

acetylation of this site reduced the ADP sensitivity of the RCA

protein, which plays an important role for the Calvin–Benson cycle

activation under low light intensities when the ADP/ATP ratio in

plastids is still high (Carmo-Silva & Salvucci, 2013). Since the alpha-

isoform of RCA in Arabidopsis is considerably more sensitive to

inhibition by ADP than the beta-isoform (Carmo-Silva & Salvucci,

2013), the effect of acetylation of K438 of RCA-b1 in relieving ADP

inhibition might be mediated by RCA-a through an effect of acetyla-

tion on subunit (i.e., alpha–beta) interaction.

Lysine acetylation on Arabidopsis RCA was detected in a previ-

ous study (Finkemeier et al, 2011), but on a different lysine residue

and the functional consequences were not studied so far. In addition

to increased acetylation, we also observed increased RuBisCO activ-

ity under low-light conditions in the hda14 mutant, which co-

occurred with increased acetylation at K474 on the RuBisCO large

subunit next to the strongly increased acetylation of K368 and K438

on RCA and on carbonic anhydrase (K269, At3g01500). Acetylation

on all of these proteins might play an important role in fine-tuning

of RuBisCO activity. In contrast to our results obtained in the hda14

mutant, two independent previous studies revealed that a decrease

in RuBisCO acetylation resulted in a higher activity of the enzyme

(Finkemeier et al, 2011; Gao et al, 2016). However, K474 on the

RuBisCO large subunit (RBCL) was not detected in either of these

studies, and hence, this site could have a different role than acetyla-

tion on any of the other 18 acetylation sites detected here and

elsewhere.

In conclusion, in this study, we were able to define the hereto-

fore-unknown acetylation candidate target proteins of RPD3/HDA1

class HDACs in Arabidopsis and specifically those of HDA14, as the

first identified RPD3/HDA1 KDACs in organelles. Furthermore, our

study revealed that about 10% of the detected lysine acetylation

sites can be regulated by these types of KDACs in Arabidopsis

leaves. Many sites might be specifically regulated under certain

environmental or developmental conditions due to changes in

KDAC activities, as we observed for low-light conditions for exam-

ple. The activity of KDAC themselves might be regulated via post-

translational modifications (Mengel et al, 2017) or by change in

interaction partners that lead to the formation of different KDAC

complexes (Dose et al, 2016). Future studies, with more detailed

analyses of individual lysine sites in proteins and the analysis of

further KDAC mutants and environmental conditions, will allow

unraveling this complex network of fine-tuning of protein functions

and interactions by lysine acetylation. Since lysine acetylation sites

can act as molecular switches, they could be engineered in plant

proteins to regulate cell-signaling cascades, the expression of certain

genes, or to modulate the activities of metabolic enzymes. Further-

more, due to recent advances in advances in CRISPR/CAS technolo-

gies, lysine acetylation sites can be used for site-directed

mutagenesis also in crop plants. Modifying these lysine residues to

constitute acetylated or non-acetylated mimics ideally will allow a

switching of metabolic activities and outputs that have the potential

to enhance plant yields or direct metabolism in a way to enhance

the accumulation of metabolic intermediates to increase the nutri-

tional values of crops and thereby indirectly promote human health.

Materials and Methods

Plant material and growth conditions

Arabidopsis thaliana (Col-0) plants were grown for 4 weeks in a

climate chamber using a 12-h light/12-h dark (21°C) photoperiod

with a light intensity of 100 lmol quanta m2/s and 50% relative

humidity. For low-light treatments, plants were transferred to

20 lmol quanta m2/s for 2 h before harvest. For growth on plates,

Arabidopsis seeds were sterilized and transferred to half-strength

Murashige–Skoog medium supplemented with 0.8% phytoagar. The

hda14 line (SALK_144995C) was obtained from the Nottingham

Arabidopsis stock center (NASC) and PCR screened according to

Salk Institute Genomic Analysis Laboratory instructions (O’Malley

et al, 2007) using the following primers: HDA14_LP 50-GAAAC
ATGTCACGCAAAAATG-30, HDA14_RP 50-TTTTGTTGGTTTGCTTC
TTCG-30, and the TDNA primer SALK-Lb1.3 50-ATTTTGCCGA
TTTCGGAAC-30. PCR products were run on 1% agarose Tris–acetate

(TAE: 40 mM Tris, 20 mM acetate, 1 mM EDTA, pH 8.0) and visual-

ized by UV illumination upon ethidium bromide staining.

Trichostatin A and apicidin treatment

About 20 fully expanded leaves from 4-week-old Arabidopsis plants

were pooled and cut into 2-mm-diameter leaf slices (for each biologi-

cal replicate). After vacuum infiltration in effector solutions (three

times for 5 min), the leaf slices were incubated at 100 lmol quanta

m2/s for 4 h. All solutions used for infiltrations were made in 1 mM

MES pH 5.5 (KOH). All chemicals were purchased from Sigma-Aldrich

(Gillingham, Dorset, UK). All stock solutions were dissolved in DMSO.

Control experiments were then performed with DMSO added in same

concentrations without effectors. Leaf material was briefly dried on

tissues for harvest and flash-frozen in liquid nitrogen.

GFP fusion and plant transformation

Entry clones for Gateway cloning were generated with the pENTR/

SD/TOPO vector (InvitrogenTM). The open reading frame of HDA14

(At4g33470) without stop codon from Arabidopsis (Col-0) was

amplified from cDNA using the following primers: 50-CACCATGTC
CATGGCGCTAATTGT-30 and 50-TAAGCAATGAATGCTTTTGGCTC
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TC-30. LR reactions were performed for recombination into the

pK7GW2 vector (Karimi et al, 2007). The vector construct was veri-

fied by sequencing and transformed into Agrobacterium tumefaciens

strain C58 followed by floral dip transformation of Arabidopsis

(Col-0) plants (Clough & Bent, 1998). Transformants were selected

by germination of seeds on MS-agar plates containing kanamycin

(50 lg/ml). Resistant plants were transferred to soil and propa-

gated.

RNA isolation and RT–PCR

Total RNA of Arabidopsis leaves was extracted using Trizol� (Invit-

rogenTM) followed by chloroform extraction, and precipitation with

isopropanol and subsequently LiCl2. The quality and quantity of the

RNA were confirmed on agarose gels and a UV-spectrometer.

Complementary DNA (cDNA) was synthesized from DNase-treated

RNA with SuperScriptIII reverse transcriptase (InvitrogenTM) follow-

ing the manufacturer’s instruction and using dT20. Real-time qPCR

was carried out in triplicate in an iQTM5 Multicolor Real-Time PCR

Detection System (Bio-Rad) using iQTMSYBR Green Super Mix (Bio-

Rad) and gene-specific primers: HDA14-F 50-ATCTGTGGCAGACT
CGTTTCG-30, HDA14-R 50-TCGCACCTTTCTCATTGGTTC-30. Levels

of selected transcripts in each sample were calculated using a stan-

dard curve method (Finkemeier et al, 2013). Expression levels of

the HDA14 transcript were normalized to ACTIN2 (At3g18780) tran-

script as housekeeping gene using the following primers: actin2-F

50-CTGTACGGTAACATTGTGCTCAG-30 and actin2-R 50-CCGATCCA
GACACTGTACTTCC-30.

Protoplast isolation and confocal laser scanning microscopy

Protoplast isolation was performed from 4-week-old Arabidopsis

leaves after the tape-sandwich method (Wu et al, 2009). Staining

with 20 nM TMRM (Sigma) was performed according to the manu-

facturer’s protocol. Imaging was performed with a spectral TCS SP5

MP confocal laser scanning microscope (Leica Microsystems,

Mannheim, Germany) using an argon and DPSS-Laser laser, respec-

tively, at an excitation wavelength of 488 nm (eGFP) and 543 nm

(TMRM). The water immersion objective lens HCX PL APO

20.0× 0.70 IMM UV was used for imaging in multitrack mode with

line switching. eGFP fluorescence and TMRM fluorescence were

measured at 500–530 and 565–615 nm, respectively.

Heterologous expression and purification of recombinant
HDA14 protein

cDNAs were amplified by PCR excluding the coding region for the

45aa signal peptide using the following primers: HDA14p-F: 50-
TTTAGTACAGAGAAGAATCCTCTATTACCATCT-30 and 50-TCAAA
CAAATTCACCTTATAAGCAATG-30. The PCR product was cloned

into pEXP-5-NT/TOPO� TA (InvitrogenTM), which allows expression

and purification of the recombinant, N-terminally 6× His-tagged

protein. Vector constructs were verified by sequencing. After trans-

forming E. coli BL21(DE3) (InvitrogenTM) with the expression vector,

the recombinant protein was expressed using the EnPresso system

(BioSilta, Germany) as described before (Jost et al, 2015): 500 ml of

EnPresso medium was mixed with 12.5 ll ZnCl2 (1 mM) solution

and 25 ll of the “EnZ I’m” mix. Freshly prepared medium was

inoculated 1:100 with a 6-h-cultivated pre-culture at 37°C under

gentle shaking (160 rpm) and incubated overnight. Subsequently,

the temperature was reduced to 25°C and a “booster tablet” and

50 ll “EnZ I’m” mix were added to the culture medium followed by

500 lM IPTG. The culture was incubated for 24 h at 250 rpm. The

cells were harvested by centrifugation (10 min at 3,000 × g), and

the pellet was resuspended in PBS buffer (pH 8.0) and lysed with a

homogenizer (EmulsiFlex-C5, Avestin) at 4°C. The cleared lysate

(centrifugation for 20 min at 30,000 × g) was incubated with 1 ml

of Ni-NTA Agarose slurry (Qiagen) for 2 h at 4°C. The resin was

washed with 50 ml PBS, pH 8.0, 4°C, and the protein was eluted

with 300 mM imidazole in HDAC buffer (8 mM KCl, 100 mM NaCl,

10 mM HEPES, pH 8.0). Pure fractions were combined and dialyzed

against HDAC buffer containing 10 mM EDTA and subsequently

against HDAC buffer supplied with 0.5 mM EDTA. The sample was

concentrated with a centrifugation filter device with 10 kD MWCO

(Amicon Ultra, Merck Millipore), supplied with 20% (v/v) glycerol

and stored at �80°C until usage.

HDA14 activity assay

The deacetylation assays were performed with a previously

described p53-derived peptide substrate containing the chro-

mophore 5-amino-2-nitrobenzoic acid (p53-5,2-ANB) (Dose et al,

2012). To produce the apoenzyme, the purified HDA14 protein was

first dialyzed against 10 mM EDTA and 1 mM DTT and in a second

step against 0.5 mM EDTA to remove bound metal ions. For the

enzyme asssay, HDA14 was supplied with either Zn2+ or Co2+ ions

by incubating the enzyme solution with 1 mM of ZnCl2 or CoCl2 on

ice for 30 min. Deacetylation assays were performed by incubating

1 lM of either Zn2+ or Co2+ supplied HDA14 with 100 lM p53-5,2-

ANB substrate in HDAC reaction buffer (10 mM HEPES, 100 mM

NaCl, 8 mM KCl, 10 lM BSA, pH 8.0) in a total volume of 50 ll at
RT. The reaction was stopped after 10 min by adding 10 ll quench-
ing solution (6.25 lM TSA in 0.1% (v/v) TFA) and developed by

adding 10 ll of trypsin solution (6 mg/ml). After 30 min of

trypsinization, the reaction mixture was supplied with 70 ll of

HDAC reaction buffer, transferred into a 100-ll quartz cuvette, and

the absorbance was monitored at 405 nm in a photometer (Helma,

Germany). Studies with inhibitors apicidin (5 and 100 lM) and TSA

(5 lM) were performed by adding these compounds to the assay

before the reactions were started. All rates were normalized to the

concentration of HDA14.

Western blot analyses

Proteins were separated on 12% SDS–polyacrylamide gels, blotted

onto nitrocellulose membrane, and incubated overnight with the

primary antibodies. The secondary IRDye 800CW antibody (LI-COR)

was used in a 1:10,000 dilution and detected with the Odyssey

reader (LI-COR).

RuBisCO activity measurements for activation
state determination

For determination of the RubisCO activation state under low-light

conditions, plants were transferred to low irradiation (20 lmol

quanta m2/s) for 5 h at 21°C, then harvested, and frozen in liquid
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nitrogen. RuBisCO initial and total activity were assayed by incorpo-

ration of 14CO2 into acid-stable products (Salvucci, 1992). The

leaves were homogenized in extraction medium [100 mM Tricine–

NaOH pH 8.0, 1 mM EDTA, 5% polyvinylpyrrolidone (PVP-40), 5%

polyethylene glycol 3350 (PEG3350), 5 mM (DTT), and protease

inhibitor cocktail (Roche)]. Initial activities were measured immedi-

ately upon extraction, whereas total activities were measured after

3-min incubation in assays without RuBP to fully carbamylate the

enzyme (Carmo-Silva et al, 2012). For each sample, assays were

conducted in duplicate. Initial and total activities were used to

calculate RuBisCO activation state, that is, (initial/total activ-

ity × 100) = % activation.

Purification and assay of RCA

The coding sequence of the RCAb1 spliceform (At2g39730.2) was

amplified from Arabidopsis cDNA using the following primers:

50-CTCCGATATCTTACTTGCTGGGCTCCTTT-30 and 50-TTTTTGATA
TCTCAAACCTCTGTTTTACC-30 introducing SacI and EcoRV restric-

tion sites for cloning into pCDFDuet-1 (Novagen�). Site-directed

mutants of RCA K438R and K438Q were introduced with the Quik-

Change Site-Directed Mutagenesis Kit (Agilent Technologies) using

the following primers: RCAb2-K438R 50-GAACTTTCTACGGTAGAA
CAGAGGAAAAGG-30 and RCAb2-K438Q 50-GAACTTTCTACGGTCAA
ACAGAGGAAAAGG-30. The N-terminally 6-His-tagged protein was

expressed and purified from Rosetta-gami cells (Novagen�) as

described detail in (Barta et al, 2011). ATPase activity of 5 lg
recombinant RCA was measured for 1 min at 23°C in 50 ll reaction
buffer (100 mM HEPES-KOH (pH 8.0), 20 mM MgCl2) containing

500 lM ATP and 500 lM ATP and 55 lM ADP, respectively. The

reaction was heat inactivated at 95°C. The ATP consumption was

determined using the KinaseGlo Max Luminescent Assay Kit

(Promega) according to the manufacturer’s protocol.

Isolation of intact chloroplasts and mitochondria

Chloroplasts were isolated from dark incubated (12 h) 5-week-old

rosette leaves of Arabidopsis. Leaves were homogenized in ice-cold

HB-buffer (0.45 M sorbitol, 20 mM Tricine-KOH pH 8.45, 10 mM

EDTA, 10 mM NaHCO3, 0.1% BSA, and 2 mM sodium ascorbate).

Chloroplasts were purified on a Percoll gradient (40–80%) and

resuspended in sorbitol buffer (0.3 M sorbitol, 20 mM Tricine-KOH

pH 8.45, 2.5 mM EDTA, and 5 mM MgCl2, 2 mM sodium ascor-

bate). Mitochondria were isolated as described previously (König

et al, 2014a).

Isolation of thylakoids

Chloroplasts were lysed in 2 ml TMK buffer (50 mM HEPES/KOH

pH 7.5, 0.1 M sorbitol, 5 mM MgCl2, 10 mM NaF), and thylakoid

membranes were sedimented at 14,000 × g.

Preparation of cell extracts and enrichment of active
histone deacetylases

Leaves from 5-week-old Arabidopsis plants were homogenized in

extraction buffer (50 mM Tris–KOH (pH 7.5), 150 mM NaCl, 10%

[v/v] glycerol, 5 mM dithiothreitol (DTT), 1% [v/v] Triton X-100,

and protease inhibitor cocktail (Sigma-Aldrich). Homogenates were

centrifuged at 14,000 × g, and protein concentration of the super-

natant was determined with the Pierce 660 nm Protein Assay

(Thermo Fisher Scientific). All protein extracts were desalted on

PD-10 Desalting Columns (GE Life Sciences), and the samples were

eluted with immunoprecipitation buffer (50 mM Tris, pH 7.5,

150 mM NaCl, 10% [v/v] glycerol).

The immobilized peptide probes, mini-AsuHd, and mini-Lys

(Dose et al, 2016) were equilibrated with immunoprecipitation

buffer two times and incubated with the protein extracts overnight

at 4°C, under constant rotation. The next day, the beads were gently

pelleted by centrifugation. The beads were transferred onto micro-

centrifugal filter system (Amchro GmbH) and washed five times

with 1 ml immunoprecipitation buffer. Proteins bound on beads

were subjected to on-bead digestion. Proteins were denatured in

6 M urea prepared in 0.1 M Tris–HCl (pH 8.0), 1 mM CaCl2 and

reduced with 5 mM DTT. Reduced cysteines were alkylated with

14 mM chloroacetamide for 30 min. Excess chloroacetamide was

quenched with DTT. Proteins were trypsinated at a urea concentra-

tion of 1 M and a trypsin (Sigma-Aldrich) to protein ratio of 1:100 at

37°C. Resulting peptides were desalted on SDB-RPS and C18 Stage-

Tips, respectively (Rappsilber et al, 2007; Kulak et al, 2014).

Protein extraction, peptide dimethyl labeling, and lysine-
acetylated peptide enrichment

Frozen leaf material was ground to fine powder in liquid nitrogen

and extracted using a modified filter-assisted sample preparation

(FASP) protocol with 30k MWCO Amicon filters (Merck Millipore)

as described in detail in Lassowskat et al (2017). Digested peptides

were dimethyl-labeled on C18 Sep-Pak plus short columns (Waters)

as described previously (Boersema et al, 2009; Lassowskat et al,

2017). Equal amounts of light and medium-labeled peptides (3–

5 mg) were pooled for each replicate and the solvent evaporated in a

vacuum centrifuge. The dried peptides were dissolved in 1 ml TBS

buffer (50 mM Tris–HCl, 150 mM NaCl, pH 7.6), and pH was

checked and adjusted where required. 15 lg peptide mixture was

stored for whole proteome analysis. About 10 mg of the pooled

labeled peptides was resuspended in 2 ml 95% solvent A (95%

acetonitrile, 5 mM ammonium acetate) and 5% buffer B (5 mM

ammonium acetate) and fractionated with a flow rate of 500 ll/min

on a Sequant ZIC�-HILIC column (3.5 lm, Merck) using a

segmented linear gradient of 0–60%. The fractions were combined to

seven final fractions and dried in a vacuum centrifuge. Peptides were

resuspended in IP buffer (50 mM Tris–HCl pH 7.6, 150 mM NaCl),

and the concentration was determined on the spectrophotometer at

280 nm. Lysine-acetylated peptide enrichment was performed as

previously described with 1 mg peptide per fraction (Hartl et al,

2015; Lassowskat et al, 2017). After enrichment, the eluted peptides

were desalted using C18 StageTips and dried in a vacuum centrifuge.

LC-MS/MS

Dried peptides were redissolved in 2% ACN, 0.1% TFA for analysis.

Total proteome samples were adjusted to a final concentration of

0.2 lg/ll. Samples were analyzed using an EASY-nLC 1000 (Thermo

Fisher) coupled to a Q Exactive, Q Exactive Plus, and an Orbitrap

Elite mass spectrometer (Thermo Fisher), respectively. Peptides
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were separated on 16 cm frit-less silica emitters (New Objective,

0.75 lm inner diameter), packed in-house with reversed-phase

ReproSil-Pur C18 AQ 3 lm resin (Dr. Maisch). Peptides (5 ll) were

loaded on the column and eluted for 120 min using a segmented

linear gradient of 0% to 95% solvent B (solvent A 5% ACN, 0.5%

FA; solvent B 100% ACN, 0.5% FA) at a flow rate of 250 nl/min.

Parameters for the different machines are listed in Dataset EV1.

MS data analysis

Raw data were processed using MaxQuant software version 1.5.2.8

(http://www.maxquant.org/) (Cox & Mann, 2008). MS/MS spectra

were searched with the Andromeda search engine against the

TAIR10 database (TAIR10_pep_20101214; ftp://ftp.arabidopsis.org/

home/tair/Proteins/TAIR10_protein_lists/). Sequences of 248

common contaminant proteins and decoy sequences were automati-

cally added during the search. Trypsin specificity was required, and

a maximum of two (proteome) or four missed cleavages (acetylome)

were allowed. Minimal peptide length was set to seven amino acids.

Carbamidomethylation of cysteine residues was set as fixed, oxida-

tion of methionine, and protein N-terminal acetylation as variable

modifications. Acetylation of lysines was set as variable modification

only for the antibody-enriched samples. Light and medium dimethy-

lation of lysines and peptide N-termini were set as labels. Peptide–

spectrum matches and proteins were retained if they were below a

false discovery rate of 1%, modified peptides were filtered for a score

≥ 35 and a delta score of ≥ 6. Match between runs and requantify

options were enabled. Downstream data analysis was performed

using Perseus version 1.5.5.3 (Tyanova et al, 2016). For proteome

and acetylome, reverse hits and contaminants were removed, the

site ratios log2-transformed, and flip-label ratios inverted. For quan-

titative lysine acetylome analyses, sites were filtered for a localiza-

tion probability of ≥ 0.75. The “expand site table” feature of Perseus

was used to allow separate analysis of site ratios for multiply acety-

lated peptides occurring in different acetylation states. Technical

replicates were averaged, and proteins or sites displaying less than

two out of three ratios were removed. The resulting matrices for

proteome and acetylome, respectively, were exported and signifi-

cantly differentially abundant protein groups and lysine acetylation

sites were determined using the LIMMA package (Ritchie et al,

2015) in R 3.3.1 (R Core Team, 2016). Volcano plots were generated

with R base graphics, plotting the non-adjusted P-values versus the

log2 fold-change and marking data points below 5% FDR (i.e.,

adjusted P-values, Benjamini–Hochberg) when present.

Data availability

The raw data, MaxQuant output files, and annotated MS2 spectra

for all acetylated peptides have been deposited to the ProteomeX-

change Consortium (http://proteomecentral.proteomexchange.org)

via the PRIDE partner repository with the dataset identifiers

PXD006651, PXD006652, PXD006695, PXD006696.

Expanded View for this article is available online.
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