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One of the major challenges in cultural evolution is to understand why and

how various forms of social learning are used in human populations, both

now and in the past. To date, much of the theoretical work on social learning

has been done in isolation of data, and consequently many insights focus on

revealing the learning processes or the distributions of cultural variants that

are expected to have evolved in human populations. In population genetics,

recent methodological advances have allowed a greater understanding of the

explicit demographic and/or selection mechanisms that underlie observed

allele frequency distributions across the globe, and their change through

time. In particular, generative frameworks—often using coalescent-based

simulation coupled with approximate Bayesian computation (ABC)—have

provided robust inferences on the human past, with no reliance on a priori
assumptions of equilibrium. Here, we demonstrate the applicability and

utility of generative inference approaches to the field of cultural evolution.

The framework advocated here uses observed population-level frequency

data directly to establish the likely presence or absence of particular hypo-

thesized learning strategies. In this context, we discuss the problem of

equifinality and argue that, in the light of sparse cultural data and the multi-

plicity of possible social learning processes, the exclusion of those processes

inconsistent with the observed data might be the most instructive outcome.

Finally, we summarize the findings of generative inference approaches applied

to a number of case studies.

This article is part of the theme issue ‘Bridging cultural gaps: interdisci-

plinary studies in human cultural evolution’.
1. Introduction
Understanding how human populations acquire, and use, social information is

one of the central challenges of cultural evolution and the focus of a highly

active, interdisciplinary debate [1]. Social learning, or cultural transmission, is

defined as learning that is facilitated by observations of, or interactions with,

another individual or their cultural products [2,3]. It supports the spread of

adaptive information, accumulated over generations [4–6], yet also bears the

risk of transmitting outdated, misleading or inappropriate information,

especially in changing environmental conditions [7]. But there is no unique

way in which social information can be acquired; in fact, a large number of

social learning processes have been identified in the literature (e.g. [5,6,8]).

Research aimed at identifying learning processes in human populations can

be roughly divided into two groups: experimental laboratory-based and theor-

etical modelling-based approaches. Laboratory-based experiments, in particular

‘microsocieties’ (e.g. [9–12]) and diffusion chain experiments (e.g. [13–16]),

have focused on uncovering the variety and subtlety of human social learning

strategies, providing a powerful framework for studying cultural evolution

empirically (see [1,17] for comprehensive review).

In the following, we focus on theoretical modelling-based approaches. These

evolutionary models of learning have mainly focused on understanding which

individual and social learning strategies are expected to have to evolved in
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spatially and temporally changing environments (see [18] for

a comprehensive review of this literature). These models

provided an elegant characterization of the long-term out-

comes of evolution through natural selection, as well as

their associated evolutionary trajectories, and therefore pro-

duce predictions of which learning processes are expected to

be present in the population.

However, in order to verify those predictions, social

learning processes would need to be observed directly so

that fine-grained individual-level data detailing who learns

from whom can be generated. But outside of controlled

experimental conditions, large longitudinal datasets of this

kind are difficult to obtain, especially in historical or

anthropological contexts (e.g. [19], but see [20,21] for two cul-

tural evolutionary case studies and [22] for a research

program dedicated to addressing this issue). This is not to

say that no such data exist, but in many case studies of inter-

est the available data are in the form of frequencies of

different variants of a cultural trait in the population at one

or several points in time. While many modern datasets pos-

sess a rich temporal resolution (e.g. those describing the

choice of first names in modern populations, which record

the number of instances of a specific name each year),

prehistoric or anthropological datasets—the focus of this

paper—typically describe the frequencies of different cultural

variants in sparse samples from the whole population.

So if we want to infer social learning processes from avail-

able data, we face a classical inverse problem: we can only

observe aggregated, population-level frequency data but

aim at identifying the underlying individual-level learning

processes that gave rise to them. Recent approaches to

address this inverse problem have focused on, among other

things: the shape of adoption curves (e.g. [4,23,24]); the com-

parison between observed levels of cultural diversity or

cultural accumulation and the ones expected under various

processes of social learning (in particular unbiased trans-

mission (or neutral evolution) (e.g. [25–28])); the shape of

rank-abundance distributions (e.g. [29–31]); and the com-

parison between observed turnover rates and the ones

expected under unbiased transmission (e.g. [32,33]) or phylo-

genetic analyses (e.g. [34]). This research has clearly shown

that robustly inferring the underlying processes of social

learning from population-level frequency data becomes a

challenging task, especially in the light of equifinality, i.e.

in situations where various learning processes can result in

very similar population-level characteristics (e.g. [35,36]).

However, the inverse problem described above is of course

not unique to cultural evolution. In fact, other scientific fields

have successfully overcome similar challenges, in particular

population genetics, which aims to understand the evolu-

tionary mechanisms that produced the allele frequency

distributions observed both now and in the past. Here, recent

developments have provided elegant means for building

complex evolutionary models, and allowing the application

of efficient generative inference frameworks, which made pos-

sible the statistical testing of increasingly realistic demographic

hypotheses. In general, the generative approach proceeds by

building a fully specified probabilistic model, in which the

hypothesized causal mechanisms are explicitly defined. This

model is then used to repeatedly simulate pseudo-datasets

under known parameter values, such that their expected

distribution can be statistically compared with observed

data, through techniques such as approximate Bayesian
computation (ABC). This comparison allows certain hypoth-

esized mechanisms to be rejected as inconsistent with the

empirical data, and the estimation of model parameters that

provide the best fit.

Our goal in this paper is to demonstrate how the genera-

tive inference approach can help answer the question of

how human populations use social information, based on

observable empirical evidence. We note that the general

idea of generative modelling has already been applied to

socio-cultural evolution. Significant early examples include

Schelling’s segregation model [37] and the influential

agent-based economic modelling framework of Sugarscape
[38]. These approaches and subsequent generalizations

(see e.g. [39]) investigated the effects of explicitly defined

individual-level causal mechanisms on population-level

outcomes, which could then be compared with observed

data. While one of the major advantages of this line of

work is that the complex nature of the models considered

allowed for more realistic expected outcomes, the principal

limitation has been the lack of a robust statistical method-

ology capable of comparing these outcomes to empirical

data. However, careful application of techniques like ABC,

as mentioned above, is beginning to remove this limitation

to inference (e.g. [40]).

We believe that the generative inference approach

reviewed in this paper may link theoretical and empirical

work in cultural evolution closer together by providing a fra-

mework that is able to evaluate the consistency between

different individual-level processes and observed popu-

lation-level patterns; in our case, between different processes

of social learning and observed patterns of cultural change.

Similarly to population genetics, such an inference framework

consists of building a generative model that establishes a

causal link between individual-level learning processes and

observable population-level frequency data that then are eval-

uated for statistical consistency. The outcome of this approach

is not only the identification of the most likely underlying

learning process given the empirical data but a description

of the breadth of processes that could have produced these

data equally well, which in turn can be interpreted as an infor-

mal measure of the level of equifinality. Additionally, the

inference framework may provide insight into the temporal

and/or spatial resolution of the population-level frequency

data that are needed to reliably distinguish between different

processes of social learning (see [41] for a related discussion).

In §1a, we briefly review some of the relevant key develop-

ments in population genetics, before exploring the

applicability of the generative inference approach to cultural

frequency data in §2.
(a) Population genetics and generative inference
Classical population genetics—with its prospective approach

[42]—provided many important theoretical insights into

how the processes of mutation, drift, selection, migration

and demographic change may shape the genetic variation

expected in a population at equilibrium (e.g. [43–45]). But

the development of coalescent theory in the early 1980s [46]

(see also [47–49]) offered an alternative retrospective view of

genetic evolution, providing a statistical model for the genea-

logical relationships between just a sample of individuals

rather than the entire population. One major advantage of

this coalescent framework is that, given an explicit model of

http://rstb.royalsocietypublishing.org/
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Figure 1. Schematic representation of the proposed generative inference framework. This non-equilibrium framework requires multiple observation (i.e. at least two)
of cultural data D(tj), in our case population-level frequencies of different cultural variant types, at known times tj. D�(tjj~u1,~u2) denotes the theoretical data
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demographic history and a mutation model, it allows for very

efficient simulation of genetic—or genomic-scale—data for an

observed sample with no a priori assumption of equilibrium.

This has proved very useful in inferring population history,

and while there is a wide array of other methodological

approaches (e.g. [50–55]), the generative approach—in

which simulated genetic data are statistically compared to

the observed data—is growing in popularity, with the

models of demographic history becoming increasingly

complex and realistic (e.g. [56–58]).

However, generative inference crucially relies on the abil-

ity to make an evaluation of the quality of the model used.

Rather than simply rejecting those demographic models or

hypotheses that generate genetic variation inconsistent with

what we observe (as in [59,60]), there exists a large and grow-

ing body of statistical techniques that allow for the explicit

comparison of competing scenarios and the estimation of

their underlying parameters. One such approach, ABC

[61,62], was developed by statistical and population geneti-

cists to circumvent the difficulty, or impossibility, of

specifying the likelihood functions for complex models.

ABC relies on repeatedly simulating pseudo-data under an

explicitly specified model and, by retaining just those par-

ameter values that generate data ‘close’ to the observed

data, allows estimation of their posterior distributions (full

details are given in §2b). A number of researchers have

used this pairing of coalescent-based simulation and ABC

to answer diverse questions about human demographic his-

tory, from early population differentiation in sub-Saharan

Africa [63], to the global expansion of modern humans

during the Late Pleistocene [58], to hunter–gatherer popu-

lation replacement in Europe [64] and the initial

colonization of the Americas [57] at the end of the last Ice

Age.
2. Generative inference for cultural evolution
In the following, we demonstrate how generative inference

procedures can be constructed and used to infer social learn-

ing processes from cultural data in the form of time-series

detailing the usage or occurrence frequencies of different cul-

tural variants. Similar to the population genetic applications,

the inference procedure consists of two steps. First, we

develop a non-equilibrium generative model capturing the

main cultural and demographic dynamics of the considered

system. This model describes the frequency evolution of

different cultural variants present in a population at given

time points under an assumed social learning hypothesis.

Second, ABC techniques are used to derive conclusions

about which (mixtures of) learning strategies are consistent

with the observable frequency data and which are not. The

aim of this framework is to allow researchers to ‘reverse

engineer’, which learning strategies are likely to have been

used in current or past populations, given knowledge of

how frequencies have changed over time, independent of

optimality or equilibrium assumptions. Figure 1 summarizes

the steps of the generative inference framework described in

this section.

We stress that this particular inference framework is

designed to analyse the temporal dynamic of cultural

change, defined as the change in frequency of different

variants of cultural traits. If the observed data are of a

different nature, e.g. describing the continuous variation

of certain attributes of cultural artefacts, such as the

dimensions of an arrowhead, then researchers have to

first construct a hypothesis about the relationship between

temporal variation of the attribute and the social learning

processes considered in order to apply a similar inference

procedure.

http://rstb.royalsocietypublishing.org/
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In §2a,b we describe the two steps of the inference frame-

work and discuss in §2c the theoretical limits to inference;

specifically, we ask how much information about underlying

social learning processes we should expect to infer from

population-level frequency data of a given temporal resol-

ution. In §2d(ii) we show how the generative approach has

been applied to cultural case studies. Lastly, in §2e we discuss

some issues researchers should consider before applying the

proposed, or a similar, inference framework.

(a) Generative model
As mentioned above, the generative model aims at capturing

the main cultural and demographic dynamics of the cultural

system. Importantly, the generative model has to produce

pseudo-data—in our case, population-level frequencies of

different variants of a cultural trait at different points in

time conditioned on the assumed social learning process—

so that theoretical predictions can be compared to empirical

observations. Thereby different learning processes are

expressed by different model parameterizations; the model

parameters are denoted by u ¼ (u1, . . ., uk) in the following.

In other words, the generative model establishes an explicit

causal relationship between the assumed processes of social

learning defined by u and observable population-level

patterns of cultural change.

We note that there are no restrictions on the type of gen-

erative model used. Models ranging from systems of partial

differential equations to agent-based simulations have also

been used successfully; in fact, a number of the models men-

tioned in §1 could, with an appropriate choice of generative

model, feasibly be adapted for use within this inference

framework. As we want to generate frequency data at differ-

ent time points, we advocate the use of non-equilibrium

models, which can also account for temporal changes in

demographic properties of the cultural system (e.g. variations

in the total size of the population of cultural variants). This

modelling choice aims at reducing the risk of misinterpreting

non-equilibrium dynamics as evidence for the presence or

absence of particular social learning processes (see [65] for

a detailed discussion). For instance, the rejection of the

hypothesis of neutral cultural evolution, based on empirical

data, has usually been interpreted as evidence for the exist-

ence of selective biases in the population. But it has been

pointed out that such a rejection can also be indicative of

non-equilibrium dynamics or simply violations of the

inherent assumptions of the neutral model (e.g. [28,66]). We

note, however, that the relaxing of the equilibrium assump-

tion requires accurate knowledge about e.g. the time points

at which the observed frequencies are recorded. We return

to this issue in §2e.

(b) Statistical inference
To infer which learning strategies are consistent with the

observed data we would ideally determine the likelihood

function of the generative model. However, in many cases

(if not most in reality) the likelihood functions cannot be

determined easily. As introduced in §1a, ABC [61,62] was

developed to circumvent this difficulty. Given observed

data D, this likelihood-free approach directly approximates

the joint posterior density of the model parameters P(u jD).

It does this through repeatedly simulating data Dw under a

generative model with parameter values drawn from their
prior distributions P(u). These prior distributions describe

the possible values that the parameter can assume or sum-

marize all prior knowledge researchers may have. Retaining

those parameter sets that generate data sufficiently ‘close’ to

the observed data D, and rejecting the rest, results in a

random sample from the distribution P(ujd(D, Dw) � 1),

where d( . , . ) is a distance metric between the observed and

simulated data, and 1 is a tolerance level determining the

approximation to the true posterior P(u jD). Modal values

and credible intervals for each model parameter can then

be obtained from this approximate joint posterior.

Due to the high-dimensionality of most real-world data-

sets, the data D are often reduced to a summary statistic (or

a set of summary statistics) S, so that we are really sampling

from P(u j d(S, Sw) � 1) to approximate the posterior P(u j S).

The choice of appropriate summary statistics to maximize

sufficiency (i.e. such that P(u j S)! P(ujD)) is not straight-

forward, and is an active area of statistical research (e.g. [67]

and see also §2e). There have been many extensions to this

initial basic—and inefficient—rejection algorithm, including

weighting the retained parameter sets dependent on their

exact distances d( . , . ) through regression methods (e.g.

[61,68]) or increasing the efficiency of sampling from the

prior distributions (e.g. [69,70]).

The output of any ABC procedure is the joint posterior

distribution of the model parameters u ¼ (u1, . . ., uk) (and

derived from that the marginal posterior distributions),

indicating the range of the parameter space that is able to

produce frequency data within a given tolerance level 1 of

the observed data, and consequently the learning strategies

that are consistent with the data. We stress that the obtained

posterior distribution is only a good approximation of the

‘true’, posterior distribution for small tolerance levels 1.

Therefore if the obtained 1 is large—and cannot be impro-

ved upon—the inferred parameter spaces are likely not

meaningful. This situation may point to an inadequacy of

the model, and therefore the assumed social learning

processes, to explain the data. The explanatory value of the

obtained posterior distribution can be investigated by

posterior predictive checks [71]. These assess how well the

parameter ranges specified by the posterior distribution

explain the observed data (see [65] for further detail and

§2d(i)). Additionally, cross validation tests or coverage plots

have been developed to further investigate the accuracy of

the results of the ABC analysis [40,72,73]. In practice,

performing ABC analyses has been made relatively straight-

forward since the release of software such as DIY-ABC [74],

ABCtoolbox [75], and R packages abc [72], abctools [76]

and EasyABC [77].

Finally, we note that as well as estimating parameters,

ABC has also been used to test between multiple compet-

ing models, by estimating Bayes factors from the relative

proportions of simulations accepted from each model

(e.g. [62]). While it has been shown that this approach is

not theoretically justified [78] when reducing the data D to

summary statistics S—as owing to the loss of information

this approximation does not necessarily converge on the

true Bayes factors—a number of authors have successfully

applied various simulation-based power analyses to mitigate

this problem (see for example [63,64,79]). And more recently

another approach utilizing machine learning algorithms—

and in particular random forests—has begun to prove

successful for complex ABC model selection [80,81].

http://rstb.royalsocietypublishing.org/
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(c) Limits to inference
It is well-known that efforts to understand learning processes

based on population-level data may be confounded by equi-

finality (e.g. [35,36] for a recent discussion). The inference

framework introduced above generates posterior distri-

butions of the model parameter describing the learning

strategies that are consistent with the observed data. There-

fore, the widths of these distributions, or their credible

intervals, may provide an informal measure of the level of

equifinality [82]. If the posterior distributions are narrow

then only a small region of the parameter space is consistent

with the data and therefore a large number of learning

processes are not able to produce the observed frequency

changes. In this case, the data carry a relatively strong signa-

ture of the underlying processes of social learning. By

contrast, if the distributions are wide, a large region of the

parameter space is consistent with the data and therefore

many social learning processes are able to generate very

similar population-level frequency patterns.

In this way the inference framework itself provides a way

of exploring the inferential limits of population-level data of a

given temporal resolution. For this, the generative model is

used to simulate frequency data with a specific parameteriza-

tion u, i.e. under a known process of social learning. Applying

the inference procedure to this data produces posterior distri-

butions, and while we know that the data have been

generated with a specific parameter value, these distributions

indicate all other values (and therefore learning processes)

that could produce the ‘observed’ frequency changes equally

well. Wide posterior distributions then mean that researchers

should not expect cultural data—which is likely to be more

noisy compared to pseudo-data produced by the generative

model—with a similar temporal resolution to provide much

information about underlying mechanisms.

But when do we consider a marginal posterior distri-

bution narrow? One possibility is to compare the widths of

prior and posterior distributions of the parameter in question.

As mentioned above, the prior distribution describes the

possible values that the parameter can assume or summarizes

all prior knowledge researchers may have (see blue, solid line

in figure 2 for an example of a uniform, uninformative prior

distribution). If the parameter range covered by the posterior

distribution is smaller compared to the range covered by the

prior distribution (see the red, dashed line in figure 2
as an example) then the inference procedure led to the exclu-

sion of some learning hypotheses: social learning processes

described by parameter values not covered by the posterior

distribution cannot generate theoretical data sufficiently

close to the observed data and are consequently not con-

sidered to be consistent with the observations. Naturally,

the smaller the credible interval the more the pool of potential

hypotheses can be reduced, and the stronger the signature of

underlying social learning processes in the observed popu-

lation-level data. If, however, the parameter ranges covered

by prior and posterior distributions are almost identical

(see the red, dotted line in figure 2 as an example), then

a priori knowledge of the researchers cannot be improved

by analysing such data at the given resolution.

Additionally, cross validation analyses as suggested in

[72] provide an alternative way of demonstrating how infor-

mative the data are about underlying social learning

processes. In this context, we showed in [83] that we should

not expect to be able to distinguish between unbiased trans-

mission and moderately strong frequency-dependent

selection based on frequency information of a population of

cultural variants at two different points in time.

(d) Application to studies of cultural evolution
(i) Cultural change in the linearbandkeramik (LBK) period
To demonstrate the applicability and utility of the generative

inference framework described above, we summarize in the

following the analysis of a cultural dataset from the earliest-

known farming population in Central Europe, the so-called

linearbandkeramik (LBK) from approximately 7500–7000

years ago (see [84] for the complete analysis). The dataset

records the frequencies of different types of decorated vessels

at seven different points in time, denoted by tj, j ¼ 1, . . . , 7

defining six phases of cultural change that vary in duration.

The aim of this study was to explore whether observed fre-

quency changes in different types of pottery between the

beginning and the end of each of the six phases are consistent

with a specific hypothesis about the underlying social

learning processes, in particular unbiased transmission,

frequency-dependent selection and pro-novelty selection.

For the sake of brevity, we consider in the following unbiased

and frequency-dependent selection only.

The first step of the inference framework is the develop-

ment of the generative model. To make use of all available

archaeological information, we used a simulation approach

that accounted for the fact that the observed frequencies

describe a sample and not the population of pottery types.

Starting from observed data, the absolute frequencies

D(tj) ¼ [n1, . . ., nk] of k different variant types in the sample

of size n(tj) at the beginning of the phase, tj, we generated a

population of cultural variants P(tj) ¼ [R1, . . ., Rk, Rkþ1] from

which the sample could have been drawn at random using

the Dirichlet distribution approach [71]. The variables Ri rep-

resent the absolute frequency of variant type i in the

population. Importantly, the population consists of k þ 1 var-

iant types, where the type k þ 1 contains all variants of types

not observed in the sample at tj.

Based on this population P(tj) ¼ [R1, . . . , Rk, Rkþ1] and an

estimate of the population size N(tj) at time tj (if no other

information is available the population size N(tj) at time tj

is inferred from the size of the sample at this time), we gen-

erated population-level frequencies of the k þ 1 variant

http://rstb.royalsocietypublishing.org/
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types conditioned on a specific process of social learning at

each time step t ¼ 1, . . . , tjþ1 2 tj. For that, we assumed that

in each time step a fraction r of the population of cultural

variants is removed and new variants are subsequently

added (in this way the framework can accommodate

temporal changes in population size). While the removal

process is random, the replacement process is defined by

the assumed process of social learning. In detail, a variant

type i, i ¼ 1, . . . , k is chosen to be added to the population

according to the probability

pi(t) ¼
0, if Ni(t)�ui

N(t)�u þ bfreq k̂ Ni(t)�ui
N(t)�u � 1

h i
, 0

Ni(t)�ui
N(t)�u þ bfreq k̂ Ni(t)�ui

N(t)�u � 1
h ih i

(1� m) otherwise,

8<
:

ð2:1Þ

where N(t) denotes the population size at time t, Ni(t) is

the number of variants of type i, u is the total number of

variants removed at this time step, ui is the number of

variants removed of type i, bfreq controls the strength of fre-

quency-dependent selection and k̂ is the number of variant

types present at time t. Importantly, choosing bfreq ¼ 0 in

equation (2.1) models unbiased transmission, whereas

bfreq . 0 describes the selective advantage for high-frequency

variant types and bfreq . 0 for low-frequency types. Further,

the variable m defines the probability with which a novel

variant type not previously seen in the population is intro-

duced into the system. A similar probability as in equation

(2.1) is defined for variant type k þ 1, containing all variant

types not observed in the sample at t1 and, per definition,

all subsequent innovations.

Lastly, to generate theoretical samples at the end of the

phase tjþ1, we randomly drew n(tjþ1) cultural variants from

the (theoretical) populations P(tj þ t), t ¼ 1, . . . , tjþ1 2 tj.

In summary, the output of this framework is sample fre-

quencies of the variant types that were present at the

beginning of the phase, tj, and an additional type containing

all unobserved variants at the end of the phase, tjþ1,

conditioned on the social learning process specified by the

parameter bfreq in equation (2.1). which controls the strength

of the frequency-dependent selection.

To infer the learning processes consistent with the

observed changes in frequency between the beginning and

the end of the phases, we applied an ABC procedure—

specifically SMC ABC (e.g. [70])—and determined the joint

posterior distributions of (bfreq, r). The replacement fraction r
cannot be estimated from external sources and therefore has

to be inferred from the data as well. Thereby the comparison

between empirical and theoretical patterns was based on the

absolute difference of the theoretical and observed frequen-

cies of the k variant types present at the beginning of the

simulation. Additionally, we required the same number of

initially present variant types to have gone extinct at

the end of the phase. The general scheme of the proposed

generative inference framework is illustrated in figure 3.

Applying this analysis to all six phases, we concluded that

(i) frequency-dependent selection does not describe the

cultural dataset from the earliest farming population

in Central Europe better than unbiased transmission.

In fact, the credible intervals of all six marginal

posterior distributions for bfreq contained the value 0,

which means that unbiased transmission cannot be

excluded as a potential explanation of the data by

this analysis (see figure 4a,b for an example);

(ii) frequency-dependent selection and unbiased trans-

mission may not be the best model to explain the

observed data as the achieved tolerance levels (i.e. the

‘distance’, between empirical and observed patterns)

of the ABC analysis were relatively large.

Point (ii) suggests that the social learning hypotheses considered

are not consistent with the data, which requires a re-evaluation of

the generative model. Indeed, we showed in [84] that pro-novelty

selection, which captures the preference for ‘young’, or recently

introduced, cultural variant types, is able to replicate the

observed frequency changes between the different phases and

is therefore a possible explanation of the data.

Posterior predictive checks further highlighted the pro-

blem raised in point (ii). To perform this, we sampled

values of the model parameters from the joint posterior distri-

bution, inserted these into the generative model and

produced theoretical frequencies at the end of each phase.

Repeating this procedure generated theoretical expectations

of the frequency ranges for each individual variant type

based on the joint posterior distribution. The comparison of

the observed frequencies of each variant type with these fre-

quency ranges allowed the explanatory power of the derived

posterior distribution to be assessed. If observations are out-

side the theoretical expectations then the inferred social

learning processes cannot replicate all aspects of the dynamic

http://rstb.royalsocietypublishing.org/
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of cultural change, indicating a mismatch between theory and

data. This analysis also has the potential to reveal single var-

iant types whose temporal frequency patterns deviate from

the general population trend (see [65] for more details).

Applying the posterior predictive check to the case study

showed that a number of observations were outside their

(theoretical) frequency ranges as determined by the joint

posterior distributions (see figure 4c for an example).
(ii) Further applications
In the last section, we demonstrated the application of a gen-

erative inference framework to a specific archaeological

dataset. Traditionally, Bayesian inference in archaeology has

been largely limited to age estimation via14C analyses (e.g.

[85,86]), but recently the scope of inference techniques has

been vastly broadened, with ABC approaches enjoying

increasing popularity (e.g. [65,82,87–90]). In one of the first

archaeological applications, Crema et al. [87] studied fre-

quency changes of weaponry types in the Jura region of

southeast France. The dataset comprises arrowheads of 20

types attributed to 9 chronologically distinct phases. The aim

of this study was to analyse whether the temporal frequency

change of the different arrowhead types contained evidence

for, or against, unbiased transmission or frequency-dependent

selection. Using an agent-based simulation as their generative

model, the authors produced frequency change patterns

under different hypotheses of social learning and under the

assumption that the cultural system is at equilibrium. They

compared these theoretical patterns to the observed data by

measuring the dissimilarity between assemblages. Applying

an ABC model selection framework, they concluded that

both unbiased transmission and negative-frequency depen-

dent selection could have generated the observed frequency

differences within the phases and therefore excluded posi-

tive-frequency dependent selection as a possible mechanism

of cultural evolution.

But ABC frameworks have not been exclusively used

to infer underlying social learning strategies. Porčić &

Nikolić [88] analysed the demographic properties of the

Mesolithic–Neolithic transition in the Central Balkan

region, in particular growth rates and population size esti-

mates for the Lepenski Vir population. Their model

generated the expected number of accumulated houses for a
large range of demographic scenarios which could then be

compared to that observed in the archaeological record. The

analysis revealed higher initial growth rates compared to

other populations undergoing the Neolithic demographic

transition and an increase in population size over time.

In order to highlight the breadth of questions that can be

addressed within a generative inference framework we out-

line two further applications, one to historical studies (a

field with no strong tradition of quantitative treatments)

and to linguistics. Rubio-Campillo [91] investigated the evol-

ution of combat. He explored the validity of different versions

of Lanchester’s law predicting the causalities of two enemy

forces engaged in a land battle, with a dataset comprising

the total number of combatants and causalities from 1080

land battles spanning from the middle of the seventeenth to

the beginning of the twentieth century. The three most

common formulations of Lanchester’s law (linear, squared

and logarithmic) can be operationalized using difference

equations, and iterating these until one of the forces has suf-

fered as many causalities as recorded in the historical record

allowed for the comparison between theoretical and observed

data. Besides confirming well-known results, the ABC frame-

work pointed to a gradual decrease in the relevance of

individual fighting abilities, suggesting that the plausibility

of the models is not constant over the different periods.

Lastly, Thouzeau et al. [81] investigated the coevolution

between genes and languages at a regional scale. They simu-

lated population genetic and cognate data under various

historical models encompassing divergences and multiple

borrowings and admixture events between linguistic

groups. They applied an ABC framework using linguistic

and genetic data from across Central Asia, and were able to

reconstruct the partly differing evolutionary scenarios under-

lying linguistic and genetic differentiation in the region.
(e) Cautionary notes
Naturally, the application of the generative inference frame-

work presented here has to proceed with caution. It is, after

all, an analysis based on an underlying model of cultural

change. If this model does not capture the main cultural

and demographic processes contributing to the observed

temporal frequency changes, the inferences obtained will

likely be misleading. In the following, we outline some

http://rstb.royalsocietypublishing.org/
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issues researchers should consider before applying this, or a

similar, inference framework.

In this paper, we advocate the use of non-equilibrium

frameworks. While this modelling choice allows us to include

knowledge about, for example, temporal changes in demo-

graphic properties and to initialize the model with

observed variant frequencies, it also introduces a time-depen-

dency. The inference framework evaluates whether frequency

changes between different time points are consistent with the

changes expected under a specific learning process (instead of

evaluating whether statistics such as the level of cultural

diversity at each point time are consistent with the equili-

brium diversity prediction) and therefore misspecifications

of time points and consequently the duration of the period

over which the frequency changes are measured can produce

erroneous theoretical expectations. Crema et al. [65] argue

that the equilibrium assumption should serve as a hypothesis

to be tested, rather than simply held a priori. They applied

equilibrium and non-equilibrium versions of the generative

model of cultural change to a dataset similar to the one

described in §2d(i). They concluded that the cultural system

was likely not at equilibrium and found hints for shifts

between negative and positive frequency-dependent selection

for different phases of the archaeological record.

In the archaeological case study described in §2d(i), the

temporal change in population size between the beginning

and the end of each archaeological phase has been inferred

from the change in sample size, and any increase or decrease

was assumed to occur in a linear fashion over the relevant

time interval. While the assumption of linear change seems

plausible, especially in the absence of other information,

drastic, unobserved demographic events such as population

bottlenecks may be an alternative scenario. Similar to the dis-

cussion about equilibrium versus non-equilibrium models,

such hidden demographic events have the potential to influ-

ence the dynamic of cultural change (e.g. [92]). As they are

not included in the generative model, their influences may

be mistakenly attributed to social learning processes that

are able to produce a similar effect at the population level.

But this potential pitfall is also itself amenable to testing

with the generative inference framework. Researchers can at

least evaluate the extent to which posterior distributions

change when assuming a population bottleneck between

the beginning and the end of the phase.

The accuracy of ABC inference depends partly on how the

difference between observed and simulated data is calculated

and on the achieved tolerance level. Calculating the differ-

ence based on summary statistics S instead of the full data

D results in discarding likely useful information [93]. If a

summary statistic (or set of) is not sufficient—as is generally

the case in practice—the resulting posterior distribution will

not be equal to that computed with the full data [94]

(see also [93] for a review of strategies dealing with this

issue). While the impact of using insufficient statistics on

inference results can be mitigated by careful application, we

note that by using the actual frequencies for calculating the

difference between observed and simulated data this problem

is circumvented entirely. Further, any posterior distribution

with large tolerance levels does not approximate the ‘true’

posterior distribution and should be treated with caution.

In this case, the generative model may not produce data

that are sufficiently close to the observed data. Additional

procedures such as posterior predictive checks, cross
validation tests or coverage plots offer additional insights

into the accuracy of the inference results.

Lastly, we point to the relationship between data quality

or completeness and inferential accuracy. A recent study

[31] revealed the importance of rare variants for inferring

underlying processes. Using the progeny distribution

(which records the frequencies of cultural variant types that

produce k new variants over a fixed period of time) as a stat-

istic, the authors showed that analyses based on only the

most popular variants, as is often necessarily the case in cul-

tural evolutionary studies, can provide misleading evidence

for underlying transmission hypotheses. Especially in archae-

ological case studies, the observed frequencies describe the

composition of often relatively small samples of cultural var-

iants, and consequently rare variant types are likely not
sampled and therefore absent from the data. Even though

statistical techniques such as the Dirichlet distribution

approach mentioned in §2d(i) are available, the number of

rare variant types, i.e. types that are not contained in the

observed sample, is likely to be misspecified (e.g. [95]) and

future work is needed to understand the influence

of missing data on the accuracy of the generative inference

frameworks presented in this paper.
3. Conclusion
Relatively recent developments in population genetics—namely

coalescent modelling and ABC—have made generative

inference possible, and shown it to be a powerful inferential

framework for understanding the human past (e.g.

[57,58,63,64]). Cultural evolutionary theory has been greatly

advanced by adopting concepts and modelling paradigms

originating in population genetics. In this spirit, the aim of

this paper was to demonstrate how analogous generative

inference frameworks can be applied to cultural frequency

data, potentially allowing us to close the gap between

theoretical modelling work and empirical work in cultural

evolution.

In particular, we focused on the topic of inferring how

human populations use social information based on the avail-

able empirical evidence. In many case studies of interest, the

available data are in the form of frequencies of different var-

iants of a cultural trait in the population at one or several

points in time, which means that we face a classical inverse

problem. Naturally, attempting to address this problem

leads to the question of how much information about under-

lying processes of social learning can in fact be extracted from

cultural frequency data of a given resolution. The framework

outlined here allows us to address this equifinality problem.

At the heart of this framework is a generative model, which

captures the main cultural and demographic properties of

the system considered. As noted, there are no restrictions

on the type of model used, with the one described in §2d(i)

simply an example tailored specifically to the observed popu-

lation-level frequency data. Whatever their form, these

models establish a causal link between model parameters

controlling the strengths of underlying evolutionary pro-

cesses and observable population-level patterns; in our case,

between parameters controlling the strengths of social learn-

ing processes and population-level frequencies of cultural

variant types. Bayesian inference techniques, such as ABC,

can then evaluate whether this specific process of social

http://rstb.royalsocietypublishing.org/
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learning is able to produce frequency patterns consistent with

the observed ones.

The outcome of this inference approach is posterior distri-

butions of the model parameters describing the learning

processes that are consistent with the observed data. As dis-

cussed in §2e, while there are a number of important

factors potentially influencing the accuracy of the analysis

to consider, the widths of the posterior distributions may

be indicative of the amount of information about the under-

lying social learning processes contained in the data.

Narrow posterior distributions indicate that the data carry a

relatively strong signature of these processes, while wider

distributions suggest that the data are largely uninformative

or that the models considered do not provide an adequate

description of the cultural system. Therefore, this approach

does not only allow for the identification of the most likely

underlying learning process given the empirical data, but

also for a description of the breadth of processes that could

have produced the these data equally well.

Revealing the presence of equifinality may appear to be a

negative result, but we stress that one should not expect a

unique mapping between (sparse) population-level frequency

data and underlying processes of cultural evolution [4,36].

Nevertheless, the analysis of such data will help in excluding

social learning processes that could not have produced the

observed data. In this way inference frameworks will lead

to a reduction in the pool of potential hypotheses (even

though the level of reduction might vary from case study

to case study) and to an understanding of which kinds of

scientific questions can be answered by which kinds of
data. Additionally, we note that generative inference frame-

works inform about the consistency of a limited set of

possible underlying mechanisms with the data while not

excluding the possibility that other mechanisms may be con-

sistent as well. However, this should not necessarily be seen

as a weakness, and as pointed out by Csilléry et al. [93,

p. 413], ‘in reality scientific arguments often revolve around

a limited number of hypotheses or scenarios without the

need to consider an infinite set of alternative models.

Models can always be improved and refined by other

authors, allowing an open discussion that can greatly

increase our understanding of the problem being studied.’

Undoubtedly, more research is needed to further develop

and improve the statistical tools and to explore the influence

of e.g. unobserved changes in the demographic properties

of the system considered or of the quality of the observed

data on the accuracy of generative inference frameworks,

but we believe this is an exciting and promising new direc-

tion in cultural evolution that has already begun to produce

interesting results.
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