English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Inflated false positive rates in fMRI depend on the voxel size of normalized images

MPS-Authors
/persons/resource/persons133483

Lohmann,  G
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mueller, K., Lepsien, J., Möller, H., & Lohmann, G. (2017). Inflated false positive rates in fMRI depend on the voxel size of normalized images. Poster presented at 25th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2017), Honolulu, HI, USA.


Cite as: https://hdl.handle.net/21.11116/0000-0000-C495-A
Abstract
Recently, Eklund et al published a manuscript discussing the issue of false positive results in functional MRI (fMRI) using the most common software packages. In their analysis, image upscaling was performed in fMRI preprocessing after registering images into a standard space (normalization). We show that the degree of image upscaling used for normalization impacts the statistical results when using the Gaussian Random field approach. A higher upscaling generally leads to smaller p-values increasing the number of false positive clusters. This result is quite troubling because statistical inference should not depend on a preprocessing parameter which can be chosen ad libitum.