English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

3D volumetric parallel excitation at 9.4T using the trajectory container concept

MPS-Authors
/persons/resource/persons192743

Shao,  T
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons133464

Avdievich,  NI
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84402

Henning,  A
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Research Group MR Spectroscopy and Ultra-High Field Methodology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource

Link
(Any fulltext)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Shao, T., Avdievich, N., & Henning, A. (2016). 3D volumetric parallel excitation at 9.4T using the trajectory container concept. Poster presented at 24th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM 2016), Singapore.


Cite as: https://hdl.handle.net/21.11116/0000-0000-7B8A-B
Abstract
This work presents experimental results of 3D volumetric parallel excitation at a 9.4T human whole-body MRI scanner. The approach and concept of a “trajectory container” is adopted to match practical considerations. The “trajectory container” is used to shape the k space trajectory and restrict it to a limited traversing area in the k space and therefore to constrain the pulse duration. A simplified and direct way of the definition of the “trajectory container” is proposed and verified with promising experimental results.