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Ecosystem functioning is enveloped by 
hydrometeorological variability 

 
Christoforos Pappas     1*, Miguel D. Mahecha2,3, David C. Frank4,5, Flurin Babst4,6 

and Demetris Koutsoyiannis   7 

 
Terrestrial  ecosystem processes, and the associated vegetation carbon dynamics, respond differently  to hydrometeorological 
variability across timescales, and so does our scientific understanding of the underlying mechanisms. Long-term variability of 
the terrestrial carbon cycle is not yet well constrained and the resulting climate–biosphere feedbacks are highly uncertain. Here 
we present a comprehensive overview of hydrometeorological and ecosystem variability from hourly to decadal timescales 
integrating multiple in situ and remote-sensing datasets characterizing extra-tropical forest sites. We find that ecosystem 
variability at all sites is confined within a hydrometeorological envelope across sites and timescales. Furthermore, ecosystem 
variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after dis- 
turbances. However, simulation results with state-of-the-art process-based models do not reflect this long-term persistent 
behaviour in ecosystem functioning. Accordingly, we develop a cross-time-scale stochastic framework that captures hydrome- 
teorological and ecosystem variability. Our analysis offers a perspective for terrestrial ecosystem modelling and paves the way 
for new model–data integration opportunities in Earth system sciences. 

 

 
 

he atmosphere and biosphere are intrinsically coupled sub- 
systems of the Earth1. Hydrometeorological  conditions shape 
ecosystem processes, which, in turn, affect the local, regional 

and  global  climate  (for  example,  albedo  feedbacks,  modulations 
of land---atmosphere  water and energy fluxes, seasonality in atmo- 
spheric CO2). Hydrometeorological  variability has been extensively 
studied2  and short- and long-term variability in climate data have 
been widely assessed3,4. With some notable exceptions primarily 
focusing on shorter timescales and/or individual sites5---9, much less 
work has been undertaken  to quantify the continuum  of variabil- 
ity in ecosystem functioning across timescales. Key uncertainties 
remain in describing how variations in short-term physiological 
processes, such as photosynthesis10, influence subsequent processes 
such as carbon allocation11  and remobilization12, and then, ulti- 
mately, inter-annual to long-term ecosystem variability. 

Here we present  a comprehensive  overview  of the continuum 
of hydrometeorological  and ecosystem variability, that is, the vari- 
ability of ecosystem process related to vegetation carbon dynamics, 
across sites and timescales. We analyse data from 23 extra-tropical 
forest sites covering different climatic zones and vegetation charac- 
teristics, and we examine timescales spanning five orders of tempo- 
ral magnitude, from hourly to decadal variability (Fig. 1). 

‘Variability’ is intuitively quantified with the estimator of stan- 
dard deviation (σ). The continuum of variability describes how σ 
changes with averaging timescale (k), denoted as σ(k), and is illus- 
trated  in  the  double-logarithmic   space  log(k)  versus  log(σ(k)),  a 
graph known as a climacogram13. The advantages of this approach 
over other mathematically equivalent tools, such as power spectrum 
and variogram, are the very intuitive interpretation, the robust sta- 
tistical estimation and the possibility to jointly analyse different 
datasets14. The continuum of variability represents the relative vari- 

 

ability decay with timescale instead of using isolated values of indi- 
vidual variables or timescales. Therefore, several cross-correlated 
datasets  can  be  represented  together,  after  applying  appropriate 
linear transformations, to extend the continuum of variability to 
longer timescales. Moreover, we derive a mathematically  tractable, 
stochastic modelling framework that allows us to provide a quanti- 
tative interpretation and a parsimonious modelling of the observed 
cross-scale patterns of variability (see Methods). 

Micrometeorological  measurements of precipitation (P), air 
temperature (T), shortwave radiation (R) and vapour pressure defi- 
cit (D) are used to describe hydrometeorological  variability at the 
analysed forest sites from hourly to annual timescales. The contin- 
uum of hydrometeorological  variability is extended to the decadal 
timescale using reanalysis data for P, T, R and D, extracted for the 
examined locations (see Methods). Ecosystem variability is quanti- 
fied using essential ecosystem variables, namely, long-term ( ≥10 yr) 
eddy covariance flux data of hourly net ecosystem exchange (NEE) 
of CO2 between land surface and atmosphere, monthly remote sens- 
ing measurements of leaf area index (LAI) and fraction of absorbed 
photosynthetically active radiation (FPAR), annual tree-ring widths 
(TRW) and site-level above-ground biomass increment estimates 
(AGB), which are available for five of the analysed forests (Fig. 1b; 
see Methods). 

We construct the relative ecosystem variability continuum by 
concatenating the timescales of NEE variability with those of LAI, 
FPAR, TRW and AGB data. We scrutinize their common relative 
variability decay patterns, even if the variables themselves reflect 
different aspects of ecosystem processes and dynamics. NEE data 
capture high-frequency variations of ecosystem carbon fluxes 
exchanged between atmosphere and the biosphere15  and describe 
ecosystem  variability  from  hourly  to  inter-annual  timescales5---8. 
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Fig. 1 | Spatial distribution of the analysed forest sites. a, The 23 sites with long-term ( ≥10 yr) micrometeorological and NEE measurements.  b, European 
sites for which TRW and AGB data are also available (white circles).  c, Length of the analysed time series of micrometeorological and eddy covariance 
measurements (the five European sites with additional measurements are highlighted in black). Different colours correspond to different forest types. 

 

 
Currently,  the longest  NEE  time series  are approximately  20 yr 
(Fig. 1c), allowing characterization of the ecosystem variability 
continuum from hourly up to biennial timescales (see Methods). 
Remote sensing data of vegetation indices, such as LAI and FPAR, 
are tightly  related  to vegetation  carbon  dynamics  (for example, 
light use efficiency models use FPAR to derive vegetation carbon 

(τ / 2), as well as at timescales k equal to mτ / 2, m ∈ . This pattern 
is caused by the interplay of daily and annual harmonic cycles and 
can be described analytically (see Methods). 
 
 

a 

fluxes16  and stocks17). Therefore,  these vegetation  indices can be 
used as proxies  of ecosystem  functioning  extending  the ecosys- 
tem variability continuum from intra-annual to triennial tim- 
escales with a 30-yr-long LAI and FPAR time series18. At these 
timescales, carbon fluxes and remote sensing vegetation indices 
should  be tightly  interconnected  and can therefore  be expected 
to show similar patterns of variability. At longer timescales, TRW 
and AGB data reveal annual tree growth and biomass dynamics 
and provide estimates of forest carbon dynamics that converge to 
observed NEE across several forests worldwide19---22. The length of 
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TRW and AGB time series at the five analysed forest sites ranges 
from 41 to 111 years20  (Fig. 1b), therefore, the annual to decadal 
ecosystem  variability  at these  sites  can  be  sufficiently  captured 
(see Methods). 

 
results 
We find that most hydrometeorological  drivers display a similar 
pattern of variability from hourly to inter-annual timescales across 
all sites, except for P, which is also well-known for its high spatial 
variability3,4  (Fig. 2b---e). However, such convergence across sites is 
not reflected in the ecosystem variability (NEE, Fig. 2a, as well as 
for individual NEE components, Supplementary Fig. 3). Although 
the continuum  of ecosystem variability follows a similar pattern 
across all the analysed sites (consistent drops in standard deviation 
at specific timescales), site-specific vegetation phenology dictates 
the magnitude of the standard deviation at intra-annual timescales. 
Seasonal ecosystem variability at deciduous forest sites is therefore 
larger compared to evergreen forest sites. This is a result of the pro- 
nounced phenological cycles of the former, whereas at forest sites 
with mixed vegetation phenology, seasonal ecosystem variability 
falls between the variability of evergreen and deciduous forest sites 
(Fig. 2a). Furthermore,  NEE, R, T and D with pronounced  peri- 
odical cycles at diurnal or annual scales show characteristic drops 
in their standard deviation at these very timescales, together with 
discontinuities  (spikes) at half the period of the harmonic  cycle 
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Fig. 2 | Ecosystem and hydrometeorological variability based on eddy 
covariance and micrometeorological data, respectively. a–e, Standard 
deviation (σ) as a function of the averaging timescale for NEE (a) as well 
as for the hydrometeorological drivers, namely R (b), T (c), P (d) and D (e), 
from hourly to inter-annual timescales for the 23 sites (Fig. 1). Data are 
standardized (zero mean and unit variance at the hourly timescale) so 
that patterns of variability can be compared across sites. Different colours 
correspond to different forest types. 
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By superimposing the continuum of variability of the analysed 

ecosystem variables, namely NEE, LAI, FPAR, TRW and AGB, we 
obtain  a  composite  cross-scale  ecosystem  variability  continuum 
from one hour to one decade (Fig. 3a). The composed variability 
continuum is consistent, as confirmed by the close match between 
the variability of individual ecosystem variables at the overlapping 
timescales (Fig. 3a; see Supplementary Fig. 10 for a quantitative 
assessment). More specifically, as illustrated in Fig. 3a for an exam- 
ple forest site, the standard deviation of NEE, as well as the standard 
deviations of LAI and FPAR from two independent remote sensing 
products, overlap at monthly to inter-annual  timescales. Similarly, 
the standard deviation of TRW and AGB closely matches the stan- 
dard deviation of NEE at the annual to biennial timescales, and the 
standard deviation of LAI and FPAR at the annual to triennial tim- 
escales (Fig. 3a). Therefore, despite the fact that different variables 
represent specific, yet tightly interwoven aspects of ecosystem func- 

tioning, the overall ecosystem variability across timescales may now 
be approximated  by the variability in NEE, LAI and TRW data for 
hourly-to-monthly,  monthly-to-annual  and annual-to-decadal tim- 
escales, respectively (Fig. 3a). Micrometeorological  measurements, 
compiled together with reanalysis climate data, describe the con- 
tinuum of variability of P, T, R and D from one hour to one decade 
(Fig. 3b). The use of several reanalysis datasets allows us to provide 
a better description of the hydrometeorological  variability, account- 
ing for uncertainties related to different products and gridding algo- 
rithms23  (see Methods). 

Overall, we find that ecosystem  variability  is confined  within 
a hydrometeorological  envelope that describes the range of vari- 
ability of the available resources, that is, water and energy (Fig. 4). 
The hydrometeorological envelope emerges from the continua of 
variability  of individual  hydrometeorological  variables  (Fig. 3b). 
For  an  example  site,  a  one-order-of-magnitude  increase  in  the 
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Fig. 3 | Composite ecosystem and hydrometeorological variability continua. a, Ecosystem variability (y axis) from hourly to decadal timescales of an 
example  site (DE–Tha; Fig. 1b), as revealed by the superposition of several ecosystem variables (that is, NEE, LAI and FPAR from MODIS TIP and GIMMS 
3g, TRW and AGB). b, The hydrometeorological envelope of this site, based on the variability continua of individual hydrometeorological variables (that is, 
P, D, R and T). Different colours correspond to different ecosystem and hydrometeorological variables. Horizontal bars highlight the timescales covered by 
each dataset. 
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Fig. 4 | the hydrometeorological envelope of ecosystem variability 

Timescale (h) Timescale (h) 

continuum. Lines merge information at multiple timescales: eddy 
covariance flux measurements  (NEE; 1 h–1 mon), remote sensing data 
(LAI 3g; 1 mon–1 yr), and tree-ring widths (TRW; 1 yr–10 yr) and represent 
the continuum of ecosystem variability at five forest ecosystems in 
Europe (coloured lines; Fig. 1b). The shaded blue area represents the 
hydrometeorological envelope of variability at these five sites and it is 
quantified by several state-of-the-art hydrometeorological datasets 
(Methods; coarser increments in x axis are used to enhance clarity). 

 

 
timescale  (for  example,  from  one  day  to  one  month;  x axes  in 
Fig. 3) leads to a fivefold decrease in the standard deviation of 
precipitation (lower bound of the envelope) and to a mild decrease 
in the standard deviation of temperature by approximately 10% 
(upper bound of the envelope; y axis in Fig. 3b), whereas the stan- 
dard deviation  of ecosystem  functioning  shows a slight decrease 
by approximately 15% (y axis in Fig. 3a). Fig. 4 illustrates the 
hydrometeorological    envelope   of   ecosystem   variability   conti- 
nua at five European forest sites where TRW and AGB data are 
available (Fig. 1b). The slopes of the entire continuum  of P, T, R 
and D variability, when compared to those of the ecosystem vari- 

Fig. 5 | Empirical versus simulated continua of ecosystem variability. a,b, 
A comparison of observation-based (that is, composite of NEE, LAI 3g, and 
TRW data; a) and simulated (TRENDY multi-model  mean simulated NEE; b) 
cross-scale ecosystem variability (y axes) across sites (coloured lines). 
The shaded area denotes the hydrometeorological envelope of the TRENDY 
climate forcing (CRU-NCEP v.4). For clarity, data are standardized so that 
they have zero mean and unit variance at the monthly timescale. 
 
 
ecosystem functioning (that is, upper limit of the envelope, close 
to R and T variability). 

To further investigate the properties and controls of ecosystem 
and hydrometeorological  variability, we develop a stochastic mod- 
elling framework to simulate the observed patterns of variability 
across timescales. A combination of deterministic harmonics and 
stochastic processes (Fig. 6; see Methods) allows us to analytically 
describe the observed patterns (for example, the imprint of har- 
monic cycles on ecosystem variability across timescales or the mag- 
nitude of its low-frequency  variability),  and to further investigate 
the properties  and  controls  of ecosystem  and  hydrometeorologi- 
cal variability. Diurnal and annual cycles correspond to variability 

(k) 
ability continua at the 23 analysed forest sites, provide a quanti- continua  of harmonic  functions  with periods  T1 = 24 h (6T ) and 

(k)  1 

tative description  of the hydrometeorological  envelope  in which T2 = 1 yr (6 
2 

), respectively  (Fig. 6a). The deterministic  harmon- 
ecosystem  variability  is confined  (Supplementary  Fig. 15). Steep 
slopes  of P variability  describe  the lower  limit  of the hydrome- 
teorological  envelope and slight slopes of R and T variability the 
upper limit, whereas the slopes of ecosystem variability continua 
fall within the range of slopes of the hydrometeorological  variables 
(Supplementary Fig. 15). 

Furthermore,   ecosystem   variability  demonstrates   long-term 
persistence. Although absolute values of ecosystem variability dif- 

ics are then combined  with three structurally  different  stochastic 
processes,  namely,  a purely  random  process  (white  noise;  abrupt 
drop in standard  deviation  as timescale  increases,  corresponding 
to processes  with no memory),  a Markovian  process (autoregres- 
sive model of order one, AR(1), reflecting processes with short-term 
persistence),  and  a  Hurst---Kolmogorov   (HK)  process  with  long- 
term persistence (Fig. 6b). The continuum of variability of the latter 
(6 (k) ) combined with that of the two harmonic functions, 6 (k) and 6 (k)   

HK (k) (k)  
 (k) T1  T2 

fer across sites as a result of different climate, vegetation composi- (that is, a6T + b6T + c6HK, where a, b and c are weighting factors) are 
tion and stand characteristics,  the temporal dependences  exhibit 
the same behaviour across the entire range of analysed timescales 
(Fig. 4). The lower end of the continuum of ecosystem variability 
shows a slight slope, indicating  long-term  persistence  in ecosys- 
tem  functioning  (Fig.  5a).  Yet,  simulation  results  with  state-of- 
the-art Dynamic Global Vegetation Models (DGVMs, TRENDY 
multi-model ensemble24; see Methods) do not reflect this pattern 
(Fig. 5b, Supplementary Fig. 12 and Supplementary Fig. 13d for 
TRENDY-simulated net primary productivity). The TRENDY- 
derived ecosystem variability continuum is consistent with the 
composite of observations at intra-annual timescales, yet diverges 
substantially at inter-annual or longer timescales. At these scales, 
ecosystem variability simulated with the TRENDY multi-model 
ensemble has a much steeper decrease than what observations 
indicate  (Fig.  5,  Supplementary  Fig.  13).  Therefore,  the  simu- 
lated continua of both NEE (Fig. 5b) and net primary productiv- 
ity (Supplementary  Fig. 13d) variability approach the lower limit 
of the hydrometeorological  envelope (that is, P variability),  with 
the former exhibiting steeper variability decay than the latter, and 
contradict  observational   evidence  of  long-term  persistence  in 

1  2 
completely   sufficient   to  describe   the  observed   ecosystem   and 
hydrometeorological  variability from hourly to decadal timescales 
(Fig. 6c,d, see Methods).  The close agreement  between simulated 
and observed patterns of ecosystem  variability brings quantitative 
evidence for the magnitude of long-term persistence in ecosystem 
functioning (Supplementary Fig. 15). 
 
Discussion 
As the timescale increases, hydrometeorological and ecosystem 
variability decreases. However, hydrometeorological conditions 
frame an envelope that constrains the continuum of ecosystem 
variability within its boundaries. We find that ecosystem variabil- 
ity exhibits  a slight  decrease  as timescale  increases,  highlighting 
the impact of low-frequency  variability in ecosystem functioning. 
Precipitation defines the lower limit and energy (that is, tempera- 
ture and radiation) the upper limit of plausible variability regimes, 
with  the  resulting  ecosystem  variability  being  confined  within 
these boundaries across sites and timescales. Low-frequency eco- 
system variability has pronounced implications for our under- 
standing of ecosystem stability and resilience25, because it denotes 
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d, Empirical (coloured points) and fitted theoretical (solid lines) variability across timescales for each hydrometeorological variable at the DE–Tha site. 

 
 

ecological memory26,27  and slow ecosystem recovery rates after 
disturbances25,28. For instance, a steep decay of ecosystem variabil- 
ity with timescale (processes with no or a short memory) would 
indicate fast ecosystem recovery rates after disturbances (that is, 
enhanced resilience), but both theoretical26  and observational evi- 
dence reported in the ecological literature rather suggest substan- 
tial memory effects in ecosystem functioning (for example, after 
drought stress27). This pattern epitomizes  the slow recovery rates 
of forest ecosystems and their susceptibility to tipping points25. It is 
also expected that changes in the hydrometeorological  drivers, for 
example in the frequency and severity of climate extremes1, could 
alter the hydrometeorological envelope and affect the cross-scale 
continuum of ecosystem variability29,30. 

DGVMs offer a process-based representation of terrestrial eco- 
system dynamics, integrating our current ecophysiological under- 
standing. However, a bottom-up modelling of terrestrial ecosystem 
functioning  is  challenging,  particularly  when  long-term  predic- 
tions are envisioned31. While DGVMs capture intra-annual eco- 
system variability adequately, ecosystem variability simulated with 
the TRENDY multi-model ensemble24  does not reflect the pattern 
derived from the composed observational data at inter-annual to 
decadal timescales. We acknowledge that the composite of cross- 
scale ecosystem variability is approximated  using various datasets 
of vegetation carbon dynamics while it ideally should be based on 
multi-decadal NEE measurements, which are, however, not cur- 
rently available. Yet, over long timescales net exchange rates of 
ecosystems are expected to have a similarly persistent behaviour 
compared to the TRW variations. Hence, the observed discrepancy 
leads us to the hypothesis that processes influencing low-frequency 
variability  in ecosystem  functioning  are either insufficiently  con- 

strained or not included in current DGVMs. For example, stand 
demographic  processes  and  the  resulting  age-related  variability 
in tree growth are rarely simulated in many DGVMs32, with some 
notable exceptions33,34. However, apart from the five analysed forest 
sites where tree-ring data are available, low-frequency variability is 
also revealed with remote sensing data from the remaining 18 sites 
(Supplementary Fig. 15). This underlines that, apart from stand 
demography, other factors will contribute to persistence in eco- 
system functioning.  In particular, the interplay of plant ecophysi- 
ological processes relating carbon supply (photosynthesis; source 
activity) and carbon demand (tissue expansion; sink activity) is yet 
to be realistically described in DGVMs35---37 and is known to sub- 
stantially affect the low-frequency variability in the terrestrial car- 
bon cycle. A mechanistic understanding of the interplay between 
environmental drivers (for example, water38, CO2

39 and nutrients40) 
and ecophysiological response (resource allocation and remobiliza- 
tion11,12, plant acclimation and plasticity41,42) is still to be consoli- 
dated, leading to well-documented structural and parameterization 
issues in DGVMs37,43  that could eventually explain the steep decay 
in the TRENDY-simulated ecosystem variability continuum. 
Moreover, the mismatch between the spatial scale of DGVM input 
(for example, climate forcing and initial conditions) and the reso- 
lution of the DGVM  simulation  grid hampers  the parameteriza- 
tion of fine-scale processes and results in aggregation biases in the 
simulated terrestrial carbon dynamics44,45. Finally, several processes 
with  well-documented   impact  on  terrestrial  carbon  fluxes  and 
stocks are also not yet adequately represented in state-of-the-art 
DGVMs (for example, leaf mesophyll conductance46, carbon turn- 
over rates47 and soil microbial activity48), and may affect cross-scale 
ecosystem variability. 
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We derive an analytical model, combining deterministic har- 

monics and stochastic processes, that represents major mechanisms 
and uncertainties and mimics the observed pattern of hydrometeo- 
rological and ecosystem  variability.  Additional  natural (for exam- 
ple, wildfires or insect outbreaks) or anthropogenic (for example, 
forest management)  mechanisms, that may affect the variability of 
certain ecosystems, can also be incorporated in the aforementioned 
framework by including theoretical representations of their cross- 
scale variability according to the observed patterns. This stochastic 
modelling framework offers a parsimonious and mathematically 
tractable approach for understanding and modelling ecosystem 
variability across sites and timescales, overcoming the aforemen- 
tioned limitations of DGVMs. Furthermore, this framework reflects 
well the observed ecological memory, an inherent property of eco- 
system functioning, therefore enhancing the ecological realism in 
numerical simulations. 

The presented analysis offers a perspective for understanding 
and  modelling  of the  variability  of the  terrestrial  carbon  cycle 
and  paves  the way  for new  model---data  integration  opportuni- 
ties in Earth system sciences. DGVMs are incorporated  in Earth 
System  Models  to  simulate  the  terrestrial  ecosystem  dynamics 
and  climate---biosphere   feedbacks49.   Therefore,   poorer  fidelity 
of low-frequency variability in the former will be propagated to 
simulation results with the latter, leading to potential biases in the 
resulting climate projections50. While model---data comparisons in 

how the (sample) standard deviation (σ(k)) of various hydrometeorological and 
ecosystem variables changes across averaging timescales (k). The values of k 
range from the original temporal resolution of each dataset (Δ) to L / 10 where 
L is the total length of the time series13, therefore allowing at least 10 values for 
the estimation of σ(k)  at k = L / 10. In order to compare hydrometeorological 
and ecosystem variability across sites and variables, data are standardized, that 
is, zero mean and unit variance at the original timescale (for example, Δ = 1 h 
for micrometeorological and NEE measurements, Fig. 2a; Δ = 1 month (mon) 
for LAI and FPAR, Supplementary Figs. 5, 6; and Δ = 1 yr for TRW and AGB, 
Supplementary Fig. 9). 
 
Composite climacograms. Linear transformations are applied to construct the 
combined continuum of ecosystem and hydrometeorological variability. Cross- 
correlated variables that reflect ecosystem functioning at different timescales 
can be combined in a single climacogram after applying appropriate linear 
transformations. This allows us to compare how the standard deviation of 
different processes varies and co-varies across ecosystems and timescales. For 
example, if the process of interest is ecosystem functioning (y(t); where t denotes 
time) then NEE, LAI, FPAR, TRW and AGB can be seen as proxies of y(t). These 
proxies are intrinsically related, and, as an approximation, we can assume that 
they are linearly connected. In other words, y(t) = ax(t) + b, where x(t) can be 
any of the proxy variables NEE, LAI, FPAR, TRW or AGB. Therefore, it follows 
that 6 (k) = a6 (k). The close match of the variability of individual ecosystem 
variables at the overlapping timescales supports this approximation (Fig. 3a 
and Supplementary Fig. 10). Moreover, theoretical and observational evidence 
demonstrate the applicability of light use efficiency models to linearly relate LAI 
and FPAR with carbon uptake, therefore capturing the variability of vegetation 
carbon fluxes16  and stocks17. 

More specifically, LAI and FPAR data are transformed so that 
(J (k=1mon) = (J (k=1mon)  and TRW and AGB data are transformed so that 

terms of relative, rather than absolute, variability are widespread, LAI,FPAR 
(k=1yr) 

NEE 
(k=1yr). Reanalysis hydrometeorological data are transformed 

so far the focus has been on individual timescales (for example, 
monthly  or  annual  anomalies  of  observed  compared  to  simu- 
lated variables). However, analysing and modelling the interplay 

6TRW,AGB = 6LAI 
so that the standard deviation of each hydrometeorological variable at the original 
timescale (Δi) matches the standard deviation of the same variable from the 
micrometeorological measurements at this timescale, for example, for the case 

between  hydrometeorological   drivers  and  ecosystem  response of precipitation 6 (k=  i ) 
(k=  i ) 

micromet,P (Fig. 3b). The increments in the x axis of 
requires developing a joint framework across multiple sites and 
timescales. Therefore, we advocate to formalize and implement a 
cross-scale model---data integration approach. The presented con- 
tinuum of ecosystem variability offers an independent  emerging 
observational constraint for Earth System Models49 and the pro- 
jected terrestrial carbon source---sink dynamics24. Moreover, the 
derived hydrometeorological  envelope defines the boundaries of 
plausible climate---carbon cycle sensitivities allowing for a predic- 

 
and climate---biosphere  feedbacks1,31. 

the hydrometeorological envelope depicted in Fig. 4 are coarser than Fig. 3b 
for the sake of clarity of Fig. 4, therefore the drops in standard deviation 
due to the diurnal and annual harmonic cycles are not visible (compare 
with Fig. 3b). 
 
Theoretical climacograms. Once the underlying process is known, its continuum of 
variability can be derived analytically13. Fig. 6a depicts the theoretical variability 
across timescales for deterministic harmonic processes with different periods, 
τ, while Fig. 6b illustrates the variability across timescales for three structurally 
 
harmonic process is given by: 

(k)    k   1   0
 

= sin for k =! m +   where m E  (1) 
Methods 
Datasets. Hydrometeorological drivers. Time series of P, T, R and D are 

 k  2  

used to quantify hydrometeorological variability (Supplementary Table 2). 
Micrometeorological data, obtained from FLUXNET2015 (December 2015 release; 
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/fullset-data-product/), are 
compiled together with time series of the following reanalysis gridded products: 
ERA Interim51, NCEP I (ref. 52) and II (ref. 53), 20th century reanalysis v.2c54---56, 
CRU TS 1.2 (ref. 57), CRU TS 3.23 (ref. 58) and CRU-NCEP v.4. The latter is a 
combination of CRU TS 3.21 and NCEP I, and is used for climate forcing of 
TRENDY simulations24. Grid cells that correspond to the locations of the eddy 

For k = (m + 1 )'l" there is a discontinuity in the continuum of variability 
(for example, spikes for k = 12 h for the case of diurnal cycle, or k = 6 mon for the 
annual cycle in Fig. 2; Supplementary Information). A purely random process 
(white noise; WN) and two widely used stochastic processes in geophysics, namely, 
(i) a Markovian process characterized by short-term persistence and (ii) a Hurst--- 
Kolmogorov process with long-term persistence, are also examined. The standard 
deviation of white noise decays with k as follows: 

covariance forest sites are selected (Supplementary Information). (J (k)  = (J 
k (2) 

Ecosystem response. Ecosystem variability is quantified based on multivariate 
proxies of ecosystem functioning (Supplementary Table 1), consisting of: (i) hourly 
NEE data (Supplementary Table 3); (ii) monthly LAI and FPAR time series from 
grid cells corresponding to the location of the eddy covariance forest sites, provided 

 
where σ denotes the standard deviation at the original timescale. For Markovian 
process, described by an autoregressive model of order one, AR(1) with lag-1 
autocorrelation (ρ), σ(k)  is given by: 

by the Moderate Resolution Imaging Spectroradiometer Two‐stream Inversion 2  k
 

Package59  (MODIS TIP; time period: 2001---2014, Supplementary Fig. 5) and the   (k)      =     (1−p )−2p(1−p  )jk (3) 
third generation of Global Inventory Modelling and Mapping Studies18  (GIMMS 
3g; time period: 1981---2011, Supplementary Fig. 6); and (iii) TRW (Supplementary 

AR(1)  k (1−p)2
 

Fig. 7) and AGB20  (Supplementary Fig. 8) available at five European sites (Fig. 1b). 
The pattern of variability of the partitioned hourly NEE data to gross primary 
productivity and ecosystem respiration is also examined (Supplementary 
Information). Moreover, the observed pattern of ecosystem variability is compared 
with simulated monthly NEE from TRENDY v.1 multi-model ensemble24  (Fig. 5), 
as well as additional simulated variables (Supplementary Information). 

 
Statistical analysis. Empirical climacograms. The continuum of 
hydrometeorological and ecosystem variability is quantified by examining 

whereas for the Hurst---Kolmogorov (HK) process, σ(k)  is equal to: 
 

(J (k) = k H−1(J 
 
where H is the Hurst coefficient (H = 0.5(log2 (ρ + 1) + 1)). The continuum of 
variability of AR(1) and Hurst---Kolmogorov process present distinct patterns. 
The former is characterized by a fast decay that is equal to white noise for 
large timescales, whereas the latter shows slight slopes as a result of long-term 
persistence (Fig. 3b). 

 
 
(4) 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/fullset-data-product/
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(k) 

 

 
Model fitting. Theoretical climacograms are fitted to empirical estimates of 
standard deviation (σ(k)) accounting for biases in σ(k)  due to sample size (L). Bias in 
σ(k)  can be estimated a priori analytically13  and is equal to: 

 
(J (k) − (J (L)   
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Weighting factors a, b and c, as well as lag-1 autocorrelation (ρ), for the case 

of AR(1), or Hurst coefficient (H), for the case of the Hurst---Kolmogorov process, 
are fitting parameters adjusted so that the sum of squared errors is minimized 
numerically (Supplementary Information). For the model fitting of the ecosystem 
variability continuum (Fig. 6c), theoretical models are fitted to the 
composite empirical ecosystem continuum as described by NEE (1 h---1 mon), LAI 
3g (1 mon---1 yr), and TRW (1 yr---10 yr), where available. Model fitting for each 
hydrometeorological variable (Fig. 6d) is conducted by fitting theoretical models 
to the mean empirical continuum of variability estimated as the mean of the 
micrometeorological, CRU-NCEP v.4, and 20th century reanalysis v.2c datasets 
(Supplementary Information). These three datasets are selected because of the large 
overlap in the analysed timescales (Fig. 3b). 

 
Code availability. The analysis was conducted in R version 3.3.2 and the scripts of 
the analysis are available from the corresponding author upon reasonable request. 

 
Data availability. The micrometeorological, eddy covariance and remote sensing 
data that support the findings of this study are available from public repositories 
(see Supplementary Information). Tree-ring widths and site-level above-ground 
biomass increment estimates used in this study are available upon reasonable 
request to D.C.F. and F.B., respectively. 
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