Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

CO Adsorption on GaPd—Unravelling the Chemical Bonding in Real Space

MPG-Autoren
/persons/resource/persons126512

Alarcón Villaseca,  Sebastián
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126787

Ormeci,  Alim
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126626

Grin,  Yuri
Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Alarcón Villaseca, S., Ormeci, A., Levchenko, S. V., Schögl, R., Grin, Y., & Armbrüster, M. (2017). CO Adsorption on GaPd—Unravelling the Chemical Bonding in Real Space. ChemPhysChem, 18(4), 334-337. doi:10.1002/cphc.201601162.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-6922-3
Zusammenfassung
Abstract The electron localizability indicator?an efficient quantum chemical tool for analysis of chemical bonding?is applied to unveil the chemical bonding behind the CO adsorption on the ( ) surface of the highly selective semi?hydrogenation catalyst GaPd. Refining the commonly applied Blyholder model, the obtained results are in excellent agreement with previous experimental and theoretical findings. The clean GaPd( ) surface presents unshielded negatively charged Pd centers and positively charged Ga species partially shielded by dangling bonds. The CO molecule adsorbs on?top of the Pd centers perperdicular to the surface, while no CO?Ga interaction is observed. The chemical bonding analysis results in deep understanding, thus enabling a cost efficient route to innovative materials by reverse engineering.