
2-Approximation Algorithm for Finding a Spanning Tree With

Maximum Number of Leaves

Roberto Solis-Oba

�

Abstract

We study the problem of �nding a spanning tree with maximum number of leaves. We

present a simple 2-approximation algorithm for the problem, improving on the previous

best performance ratio of 3 achieved by algorithms of Ravi and Lu. Our algorithm can be

implemented to run in linear time using simple data structures. We also study the variant

of the problem in which a given subset of vertices are required to be leaves in the tree. We

provide a 5=2-approximation algorithm for this version of the problem.

1 Introduction

In this paper we study the problem of �nding a spanning tree with maximum number of leaves

in an undirected graph. This problem has applications in the design of communication networks

[5], circuit layouts [11], and in distributed systems [10]. Galbiati et. al [3] have proven that

the problem is MAX SNP-complete, and hence that there is no polynomial time approximation

scheme for the problem unless P=NP. In this paper we present a 2-approximation algorithm for

the problem, improving on the previous best approximation ratio of 3 achieved by algorithms of

Ravi and Lu [8, 9].

We brie
y review previous and related work to this problem. The problem of �nding a span-

ning tree with maximum number of leaves is, from the point of view of optimization, equivalent

to the problem of �nding a minimum connected dominating set. However, the problems are very

di�erent when considering how well their solutions can be approximated. Khuller and Guha [5]

presented an approximation preserving reduction from the set-cover problem to the minimum

connected dominating set, thus showing that the solution for this latter problem cannot be ap-

proximated within a constant factor of the optimal. However, the solution to the problem of

�nding a spanning tree with maximum number of leaves is known to be approximable within a

constant of the optimum value [8, 9].

�

Max Planck Institut f�ur Informatik. Im Stadtwald. 66123 Saarbr�ucken, Germany. Email address: solis@mpi-

sb.mpg.de.

1

There are several papers that deal with the question of determining the largest value `

k

such that every connected graph with minimum degree k has a spanning tree with at least `

k

leaves [1, 4, 7, 11]. Kleitman and West [7], Storer [11], and Griggs et al. [4] showed that every

connected graph with n vertices and minimum degree k = 3 has a spanning tree with at least

n=4 + 2 leaves. For k = 4 Kleitman and West [7]proved that `

k

� (2n+ 8)=5, and for arbitrary

k they give a lower bound of (1 �
(ln k=k))n for the number of leaves. This bound was later

improved by Duckworth et al. [1] to

k�5

k+1

2

k

+ 2 for the special case of a hypercube of dimension

k. All these algorithms can be used to approximate the solution to the problem of �nding a

spanning tree with maximum number of leaves, but only for graphs with minimum degree k,

k � 3.

Ravi and Lu [8] presented the �rst constant-factor approximation algorithm for the problem

on arbitrary graphs. They used local-improvement heuristics that resulted in approximation

algorithms with approximation ratios of 5 and 3. Later [9] they introduced the concept of leafy

forest that allowed them to design a very e�cient 3-approximation algorithm for the problem. A

leafy forest has two nice properties that they exploit in this algorithm: (1) it can be completed

into a spanning tree by changing a small number of leaves of the forest into internal vertices of

the tree, and (2) the number of leaves in an optimal tree can be upper bounded in terms of the

number of leaves in the forest.

We improve on the algorithms by Ravi and Lu by providing a linear time algorithm that

�nds a spanning tree with at least half of the number of leaves in any spanning tree of a given

undirected graph. Our algorithm uses expansion rules, to be de�ned later, similar to those used

by Kleitman and West [7]. However we assign priorities to the rules and use them to build a

forest instead of a tree as in [7]. Incidentally, the forest F that our rules build is a leafy forest,

so we take advantage of its special structure to build a spanning tree with a number of leaves

close to that in the forest.

Informally, the expansion rules of low priority used by our algorithm increase by a small

amount the number of leaves in the forest, while the rules of high priority increase this number

by a large amount. We are able to prove that the approximation ratio of the algorithm is 2

by showing that each rule of low priority adds to the forest at least one vertex that must be

internal in any tree T

�

with maximum number of leaves. Moreover, we show that this set of

internal vertices is disjoint with the set of internal vertices required to interconnect the subtrees

induced in T

�

by the vertices spanned by F . This is enough to prove the bound of 2 for the

approximation ratio of the algorithm. We give an example which shows that this bound is tight.

By careful implementation, the algorithm can be made to run in linear time using simple data

structures.

We also consider the variant of the problem in which a given set of vertices S must be leaves

and a spanning tree T

S

with maximum number of leaves subject to this constraint is sought. By

using the above algorithm we reduce this problem to a variant of the set covering problem in

which instead of minimizing the size of a cover, we want to maximize the number of sets which

2

T T

x

x

y

u u , j > 1

1 j

u u , j > 1

1 j

(a) (b)

i i

Figure 1: Expansion rules.

do not belong to the cover. We present a simple heuristic for this latter problem which yields a

(5=2)-approximation algorithm for �nding the spanning tree T

S

.

The rest of the paper is organized in the following way. In Section 2 we present our approx-

imation algorithm for the problem of �nding a spanning tree with maximum number of leaves.

In Section 3 we prove a weaker bound of 3 for the approximation ratio of the algorithm, and in

Section 4 we strengthen the analysis to show the ratio of 2. In Section 5 we describe a linear

time implementation of the algorithm.In Section 6 we present a (5=2)-approximation algorithm

for the version of the problem in which a given set of vertices must be leaves of the tree.

2 The Algorithm

Let G = (V;E) be an undirected connected graph. We denote by m the number of edges and

by n the number of vertices in G. Let T

�

be a spanning tree of G with maximum number of

leaves. In this section we present an algorithm that �nds a spanning tree T of G with at least

half of the number of leaves in T

�

.

The algorithm �rst builds a forest F by using a sequence of expansion rules, to be de�ned

shortly. Then the trees in F are linked together to form a spanning tree T . When the trees in

F are joined, some of the leaves of F become internal vertices in T . We say that a leaf of F is

killed if it becomes an internal vertex of T . The expansion rules used to build F are designed so

that a large fraction of the vertices in F are leaves and when T is formed the smallest possible

number of leaves from F are killed.

Every tree T

i

of the forest F is built by �rst choosing a vertex of degree at least 3 as its

root. Then the expansion rules described in Figure 1 are used to grow the tree. These rules are

applied to the leaves of the tree. If a leaf x has at least two neighbors not in T

i

then the rule

shown in Figure 1(b) is used and all the neighbors of x not belonging to T

i

are placed as its

3

x

y

u u
1

i
T

black vertex

2

Figure 2: Rule 1.

children. If x has only one neighbor y that does not belong to T

i

and at least two neighbors of

y are not in T

i

, then the rule shown in Figure 1(a) can be used. This rule puts y as the only

child of x and all the neighbors of y not in T

i

are placed as children of y. When a rule is applied

to a vertex x we say that x is expanded by the rule.

We assign priorities to the expansion rules as follows. The rule shown in Figure 2, namely a

leaf x has a single neighbor y not in F and y has exactly two neighbors outside F , has priority

1. All other expansion rules have priority 2. When building a tree, if two di�erent leaves can

be expanded, the leaf that can be expanded with the highest priority rule is expanded �rst. If

two leaves can be expanded with rules of the same priority, then one is arbitrarily chosen for

expansion. A tree T

i

is grown until no expansion rule can be applied to its leaves.

In the rest of the paper we will refer to the rule of priority 1 simply as rule 1. Rule 1 adds

two new leaves to some tree T

i

and at the same time it kills one leaf from T

i

. The vertex y,

parent of the two new leaves (see Figure 2), is called a black vertex.

Our algorithm for �nding a spanning tree T with many leaves is the following.

Algorithm tree(G)

F ;

while there is a vertex v of degree at least 3 do

Build a tree T

i

with root v and leaves the neighbors of v.

while at least one leaf of T

i

can be expanded do

Find the leaf of T

i

that can be expanded with

a rule of largest priority, and expand it.

end while

F F [T

i

Remove from G all vertices in T

i

and all edges incident to them.

end while

Connect the trees in F and all vertices not in F to form a spanning tree T .

4

3 Analysis of the Algorithm

Let F = fT

0

; T

1

; : : : ; T

k

g be the forest built by our algorithm, and let X be the set of vertices

not spanned by F . We call X the set of exterior vertices. It is easy to see that an exterior vertex

cannot be adjacent to an internal vertex of some tree T

i

. Our expansion rules allow us to prove

the following properties for the exterior vertices.

Lemma 3.1 Let G

0

= (V

0

; E

0

) be the graph formed by contracting every tree T

i

2 F to a single

vertex and then removing multiple edges between pairs of vertices. Every exterior vertex has

degree at most 2 in G

0

.

Proof. Assume that there is a vertex v 2 X that has degree at least 3 in G

0

. Consider 3 of the

neighbors of v. Note that these 3 vertices cannot be exterior vertices because then algorithm

tree would have chosen v as the root of a new tree. Hence, at least one neighbor of v is in F .

Let T

i

be the �rst tree generated by our algorithm that contains one of the neighbors u of v.

Since v is adjacent to two vertices not in T

i

then algorithm tree would have expanded u using a

rule of the form shown in Figure 1(a). 2

Lemma 3.2 Let u be a leaf of some tree T

i

2 F . If u is adjacent to two vertices v; w 62 T

i

, then

v and w are leaves of the same tree T

j

2 F .

Proof. Clearly, v and w cannot be both exterior vertices. Also neither v nor w can be internal

vertices of some tree T

j

, because if, say, v is an internal vertex of T

j

, then

1. if the algorithm builds tree T

j

before T

i

, then vertex u would be placed as child of v in T

j

,

and

2. if T

i

is built �rst, then v would have been placed as child of u. To see this observe that

every internal vertex of a tree T

j

2 F has at least 3 neighbors in T

j

. Thus, vertex u would

have been expanded with a rule of the form shown in Figure 1(a) while building tree T

i

.

Hence at least one of v; w must be a leaf in F . Let v be a leaf of some tree T

j

. Let p be the

parent of u in T

i

. If w is not a leaf of T

j

, then we can assume without loss of generality that

when algorithm tree adds vertex v to T

j

vertex w still does not belong to F . Note that then

tree T

i

cannot be built before T

j

because our algorithm would have placed v and w as children

of u. So let T

j

be built before T

i

. Then vertices u; p, and w are not yet in F when T

j

is built.

This means that algorithm tree would expand v and place u as its child in T

j

. Hence v and w

must be leaves of T

j

. 2

Corollary 3.1 Any spanning tree of G has at most jV (F)j � 2k leaves, where V (F) is the set

of vertices spanned by the forest F .

5

Proof. Let T

0

be a spanning tree of G and let F

0

be the forest induced by T

0

on V (F). By

Lemmas 3.1 and 3.2, any way of interconnecting the trees in F

0

to form a spanning tree must

kill at least 2k leaves from F

0

. Also, to form a spanning tree of G, every exterior vertex not

used to interconnect the trees in F

0

must be attached to a di�erent leaf of F

0

. 2

We show �rst that the approximation ratio of algorithm tree is at most 3, and in the next

section we show how to tighten the analysis to prove the approximation ratio of 2. Given a

graph G, let T

�

be a spanning tree of G with maximum number of leaves. For a tree T

i

2 F , let

V (T

i

) be the set of vertices spanned by it, and let B(T

i

) be the set of black vertices in T

i

. Given

a tree T let `(T) be the set of its leaves. The set of black vertices in the forest F is denoted as

B(F).

Lemma 3.3 For any tree T

i

2 F , j`(T

i

)j � 3 + jB(T

i

)j+

jV (T

i

)j�3jB(T

i

)j�4

2

.

Proof. The root of T

i

is a vertex of degree at least 3, so it has at least 3 children in T

i

. Also,

every application of rule 1 adds two new leaves to T

i

while killing one. Hence, by using rule 1

for jB(T

i

)j times the number of leaves in T

i

is increased by jB(T

i

)j. All other vertices in T

i

are

added by a rule of priority 2. It is not di�cult to check that when a rule of priority 2 is used,

the increase in the number of leaves in T

i

is at least equal to half of the number of vertices added

to T

i

by the rule. 2

Lemma 3.4 The approximation ratio of algorithm tree is smaller than 3.

Proof. Let T be the spanning tree built by our algorithm and T

�

be a tree with maximum

number of leaves. By Corollary 3.1 and Lemma 3.3,

`(T

�

)

`(T)

�

jV (F)j � 2k

P

k

i=0

(3 + jB(T

i

)j+

jV (T

i

)j�3jB(T

i

)j�4

2

)� 2k

�

2(jV (F)j � 2k)

jV (F)j � jB(F)j � 2k + 2

� 2 +

2jB(F)j

jV (F)j � jB(F)j � 2k

Note that jV (F)j =

P

k

i=0

jV (T

i

)j �

P

k

i=0

(4+3jB(T

i

)j) because the root of a tree T

i

has degree at

least 3 and each application of rule 1 adds three vertices to the tree. So jV (F)j > 4k+ 3jB(F)j,

and therefore,

`(T

�

)

`(T)

< 2 +

2jB(F)j

2jB(F)j+ 2k

� 3:

2

Note that if jB(F)j = 0 then the proof of Lemma 3.3 would give a bound of 2 for the

approximation ratio of the algorithm. However, if jB(F)j > 0 then our analysis yields a bound

of only 3. Intuitively this is because rule 1 adds three vertices to a tree, but it increases the

number of leaves of the tree by only 1. So, only one third of the vertices added by rule 1 are

6

r

y

T Ti j

top vertex

Inter-cluster paths

Figure 3: Vertex y is a top vertex.

leaves. To prove the bound of 2 for the approximation ratio of our algorithm we will show that

there must be at least one internal vertex in T

�

for every black vertex in F .

4 Top, Exterior, and Black Vertices

Let T

0

; T

1

; : : : ; T

k

be the trees in the forest F , with the subtrees indexed in the order in which

they are built by algorithm tree. The set of vertices V (T

i

) spanned by tree T

i

is called a cluster.

Fix a spanning tree T

�

of G with maximum number of leaves. We choose one of the internal

vertices r of T

�

as its root. In the following discussion we will assume that T

�

is a rooted tree.

We modify the optimal tree T

�

and the tree T built by our algorithm by contracting into a

single edge every path formed by exterior vertices of degree 2 in T

�

. By doing this every exterior

vertex which is a leaf in T

�

is directly connected to a non-exterior vertex. Note that this change

does not modify the number of leaves of T

�

or T . Moreover, the forest F is not a�ected by this

change. We call the resulting trees T

�

and T .

Consider a vertex x of some cluster V (T

j

) which does not contain the root r. Let p

rx

be the

path in T

�

from r to x. Let x be the only vertex from V (T

j

) in p

rx

and let y 2 V (T

i

) be the

closest, non-exterior vertex, to x in p

rx

. We say that y is a top vertex (see Figure 3).

Given a vertex x of T

�

, let T

�

x

be the subtree of T

�

rooted at x. We denote the set of top

vertices in T

�

x

as P (T

�

x

). Let B

r

(T

�

x

) be the set formed by the black vertices in T

�

x

and the

vertices in T

�

x

which are roots of trees in F . For every exterior vertex v which is a leaf in T

�

x

,

let a(v) be the closest ancestor of v in T

�

x

which is not an exterior vertex. Let A(T

�

x

) be the set

formed by the ancestors a(v) for all exterior vertices v which are leaves in T

�

x

. Note that every

vertex in P (T

�

x

) and every vertex in A(T

�

x

) is a leaf of some tree in F .

We need the following property of the sets P (T

�

x

), B

r

(T

�

x

), and A(T

�

x

) to prove the bound of

2 for the approximation ratio of our algorithm.

7

Lemma 4.1 In every subtree T

�

x

of T

�

, the sets P (T

�

x

); A(T

�

x

), and B

r

(T

�

x

) are disjoint.

Proof. Let v be a vertex in B

r

(T

�

x

). Either v is a black vertex or the root of some tree T

i

2 F .

Observe that when algorithm tree adds vertex v to T

i

, all the neighbors of v which do not belong

already to F are placed as children of v in T

i

. Thus, v cannot be adjacent to an exterior vertex

and so v 62 A(T). Let us assume that v 2 P (T

�

x

). Since v cannot be adjacent to an exterior

vertex, then it must be adjacent to some vertex u 2 T

j

6= T

i

. Note that if our algorithm builds

tree T

i

before T

j

, then vertex u would have been placed as child of v in T

i

. Similarly, if tree T

j

is built �rst, then vertex u would have been expanded with a rule of priority 2 since v has at

least three neighbors in T

i

. This expansion would place v as a child of u in T

j

. Therefore, sets

B

r

(T

�

x

) and P (T

�

x

) are also disjoint.

To show that P (T

�

x

) and A(T

�

x

) are disjoint, assume the opposite, i.e., there is a vertex v

in some tree T

i

such that v 2 P (T

�

x

) and v 2 A(T

�

x

). Since no vertex can be adjacent to two

exterior vertices, then v must be adjacent to some vertex u 2 T

j

6= T

i

. Note that tree T

i

cannot

be built before T

j

because then v would be expanded with a rule of priority 2. This cannot

happen since v is a leaf of T

i

. Also, T

j

cannot be formed before T

i

because then u would have

been expanded with a rule of priority at least 1 that would have placed v as its child. Hence

sets P (T

�

x

) and A(T

�

x

) must be disjoint. 2

The de�cit of a subtree T

�

x

of T

�

, denoted as de�cit(T

�

x

), is de�ned as jP (T

�

x

) [A(T

�

x

) [

B

r

(T

�

x

)j � jI(T

�

x

)j, where I(T

�

x

) is the set of internal vertices in T

�

x

.

We prove below that the de�cit of T

�

is at most 1. This together with Lemma 4.1 will show

that

`(T

�

) � jV (T

�

)j � jA(T

�

)j � jP (T

�

)j � jB

r

(T

�

)j+ 1

= jV (F)j � jP (T

�

)j �B

r

(T

�

)j+ 1

< jV (F)j � jB(F)j � k � k because there are at least k top vertices in T

�

and jB

r

(T

�

)j = jB(F)j+ k + 1:

This will immediately prove the following theorem.

Theorem 4.1 Algorithm tree �nds a spanning tree with at least half of the number of leaves in

T

�

.

Proof. By the proof of Lemma 3.4, the tree T built by our algorithm has j`(T)j � (jV (F)j �

jB(F)j � 2k)=2. Hence by the above discussion,

`(T

�

)

`(T)

<

jV (F)j � jB(F)j � 2k

(jV (F)j � jB(F)j � 2k)=2

� 2:

2

8

4.1 Bounding the De�cit of T

�

In this section we prove that the de�cit of T

�

is at most 1, this will complete the proof of

Theorem 4.1. We say that a subtree T

�

x

has maximum de�cit one if de�cit(T

�

x

) = 1 and for

every vertex v of T

�

x

the de�cit of the subtree T

�

v

is at most 1. We now show some properties of

trees of maximum de�cit one which we need to prove the bound for the de�cit of T

�

.

Lemma 4.2 Let T

�

x

be a subtree of T

�

of maximum de�cit one. Then at least one leaf of T

�

x

belongs to B

r

(T

�

).

Proof. Since all vertices in P (T

�

x

) and A(T

�

x

) are internal vertices of T

�

x

, then the only way in

which T

�

x

can have de�cit 1 is if one of its leaves belongs to B

r

(T

�

x

). 2

Lemma 4.3 No edge in G connects two vertices from B

r

(T

�

).

Proof. When algorithm tree adds a black vertex u 2 B

r

(T

�

) to some tree of F , all neighbors of

u not in F are placed as its children. Since by de�nition the children of a vertex u 2 B

r

(T

�

)

cannot belong to B

r

(T

�

) the claim follows. 2

Lemma 4.4 If T

�

x

is a subtree of maximum de�cit one, then its root x is either a leaf or it has

at lest 2 children.

Proof. The claim follows trivially if x 2 B

r

(T

�

) is a leaf of T

�

. So we assume that x is an internal

vertex of T

�

. We consider 3 cases. (1) If x 2 A(T

�

x

), then x is the parent of an exterior vertex u,

and by Lemma 3.1 the subtree T

�

u

has de�cit at most zero. Thus the only way in which T

�

x

can

have de�cit 1 is if x has another child v and de�cit(T

�

v

) = 1. (2) If x 2 V (T

�

x

)�B

r

(T

�

x

)�P (T

�

x

),

then it is not di�cult to see that x must be the parent of at least 2 subtrees of de�cit 1. (3) For

the case when x 2 B

r

(T

�

x

) or x 2 P (T

�

x

), we prove the lemma by showing that

(a) if x 2 B

r

(T

�

x

) and x is not a leaf of T

�

then the de�cit of subtree T

�

x

is smaller than 1, and

(b) if x 2 P (T

�

x

) then x has at least two children u and v such that u belongs to the same

cluster as x and de�cit(T

�

u

) = 1, and v does not belong to the same cluster as x and

de�cit(T

�

v

) < 1.

We prove (a) and (b) by induction on the number of vertices in T

�

x

. For the basis of the

induction, we assume that T

�

x

consists of a single vertex x, and that x is a leaf of T

�

. Thus

claims (a) and (b) trivially hold.

For the induction step we need to consider two di�erent cases, x 2 B

r

(T

�

x

) and x 2 P (T

�

x

).

If x 2 B

r

(T

�

x

), we show that T

�

x

cannot have maximum de�cit 1. Let u be a child of x and

de�cit(T

�

u

) = 1. Note that u cannot be a leaf of T

�

because then the only way in which

de�cit(T

�

u

) can be 1 is if u 2 B

r

(T

�

). By Lemma 4.3 this cannot happen. Hence, u is an internal

vertex of T

�

. By induction hypothesis all internal vertices v of T

�

u

for which de�cit(T

�

v

) = 1

have at least two children. To simplify the argument we modify the tree T

�

x

as follows. For

each internal vertex v of T

�

u

for which de�cit(T

�

v

) = 1 remove all its children except two of them

chosen as follows.

9

1. If v 2 V (T

�

x

) � A(T

�

x

) � P (T

�

x

), then keep two children of v that are roots of subtrees of

de�cit one.

2. If v 2 A(T

�

x

), then keep the exterior vertex adjacent to v and one of its children that is

the root of a subtree of de�cit one.

3. If v 2 P (T

�

x

), then keep a vertex v

1

from the same cluster as v such that de�cit(T

�

v

1

) = 1

and a vertex v

2

not in the same cluster as v such that de�cit(T

�

v

2

) < 1. By induction

hypothesis these vertices must exist. Also, remove all children of vertex v

2

.

We denote the resulting tree as T

�

x

. Note that every internal vertex of T

�

x

, with the possible

exception of x, have degree 3. Also, by Lemma 4.2, at least one leaf of T

�

x

belongs to B

r

(T

�

x

) and

so there are at least two vertices in set B

r

(T

�

x

). Consider the forest F built by our algorithm.

Let w

1

and w

2

be, respectively, the �rst and second vertices from B

r

(T

�

x

) that are added to

forest F by algorithm tree. Note that w � 1 and w

2

are not added at the same time to F . Let

S be the set of vertices from T

�

x

which have been added to F by our algorithm just before w

2

is

included in some tree of F . Since w

1

is either a black vertex or the root of some tree T

i

2 F ,

then after vertex w

1

is added to F all its neighbors must belong to F . This means that if w

1

is a leaf then its parent must be in S, and if w

1

= x then u must belong to S. By induction

hypothesis w

1

cannot be an internal vertex of T

�

u

.

Consider a longest path L in T

�

x

starting at w

1

and going only through internal vertices of

T

�

x

that belong to S. Let y be the last vertex in L. Note that y 6= x because otherwise w

1

= x

and u would also belong to S. Since u is an internal vertex, then x would not be the last vertex

in L. Similarly, if w

1

is a leaf then its parent in T

�

x

belongs to S and so y 6= w

1

.

At least two of the neighbors of y in T

�

x

must belong to S because otherwise y would be

expanded by our algorithm using a rule of priority 2 before w

2

is added to F . By de�nition of

S, this cannot happen. Let y

1

and y

2

be two neighbors of y in S. Clearly, both y

1

and y

2

cannot

be internal vertices because otherwise L would not be a longest path as described above. Thus,

let y

1

be a leaf of T

�

x

. There are four cases that need to be considered.

1. y 2 V (T

�

x

)�A(T

�

x

)�P (T

�

x

). Then the de�cit of tree T

�

y

1

is 1 and so by Lemma 4.2 y

1

must

belong to B

r

(T

�

x

). Since we assumed that w

1

was the only vertex from B

r

(T

�

x

) in S then

it must be the case that y

1

= w

1

. But then by de�nition of y, vertex y

2

must also be a

leaf and de�cit(T

�

y

2

) = 1. By Lemma 4.2, y

2

must also belong to B

r

(T

�

x

) which contradicts

our assumption that w

1

was the only vertex from B

r

(T

�

x

) in S.

2. y 2 B

r

(T

�

x

). This cannot happen since y 6= w

1

and we assumed that there is only one

vertex form B

r

(T

�

x

) in S.

3. y 2 A(T

�

x

). Then either y

1

is an exterior vertex or y

1

2 B

r

(T

�

x

). But y

1

cannot be an

exterior vertex since y

1

2 S. Also y

1

cannot belong to B

r

(T

�

x

) because if it does then

y

1

= w

1

and y

2

would be an internal vertex of T

�

contradicting our assumption for L.

10

4. y 2 P (T

�

x

). Then either (i) y

1

is exterior, (ii) y and y

1

belong to the same cluster and

y

1

2 B

r

(T

�

x

), or (iii) y

1

and y belong to di�erent clusters. We argued above against the

�rst possibility. If y

1

2 B

r

(T

�

x

) then we argued above that y

1

= w

1

. This means that y

2

must be a leaf in a cluster di�erent from y. In this case simply rename y

2

as y

1

and reduce

case (ii) to case (iii). For (iii) let us assume that y belongs to cluster T

i

and y

1

to cluster

T

j

. We know that y has three neighbors. As above let y

2

be the neighbor of y that belongs

to S and let y

3

be the third neighbor. Note that if y

3

is an internal vertex, then it cannot

belong to S because then L would not be the longest path as assumed above. Also, if

y

3

is a leaf then it must belong to B

r

(T

�

x

) since by induction hypothesis de�cit(T

�

y

3

) = 1.

Therefore vertex y

3

does not belong to S.

By Lemma 3.2 vertex y

3

must belong to cluster T

i

or to cluster T

j

. If y

3

is in cluster T

j

then since y

3

62 S algorithm tree must build tree T

i

before T

j

. But this means that the

algorithm would have expanded y by placing y

1

and y

3

as its children in T

i

. Hence y

3

must

belong to cluster T

i

and T

j

must be built before T

i

.

Since y is a top vertex then, by de�nition, its parent in T

�

x

must belong to cluster T

i

and,

moreover, by induction hypothesis one of its children also belongs to T

i

. This leads also

to a contradiction since then our algorithm would have expanded vertex y

1

with a rule of

priority 1 making y a black vertex in T

j

.

The above argument proves that an internal vertex from B

r

(T

�

) cannot be the root of a

subtree of T

�

of maximum de�cit one.

We now prove claim (b). Let x 2 P (T

�

x

) and let u be a child of x that belongs to a

di�erent cluster from x. Let us assume that de�cit(T

�

u

) = 1 and derive a contradiction from

such assumption. This will prove (b). Note that by de�nition u cannot be a top vertex, and u

cannot belong to B

r

(T

�

x

) because otherwise algorithm tree would have put u and x in the same

cluster. Observe also that u cannot belong to the set A(T

�

x

) because then vertex u would be

adjacent to two vertices (x and an exterior vertex) not in T

j

, and hence u would be expanded

by our algorithm and x would be placed as its child in cluster T

j

.

Let x belong to cluster T

i

and u to cluster T

j

. Since by induction hypothesis u has two

children, algorithm tree cannot form cluster T

i

before cluster T

j

because then x would expanded

with a rule of priority 1 making u a black vertex in T

i

. So we assume that cluster T

j

is built

before cluster T

i

.

Consider the tree T

�

u

. Let us trim the tree as described above so that each internal vertex

has exactly two children and call the resulting tree T

�

u

. As above, let w

1

and w

2

be the �rst and

second vertices from B

r

(T

�

u

) that are added to F by our algorithm. Let S be the set of vertices

from T

�

u

which have been added to F just before w

2

is included in F . Let L be a longest path

starting at w

1

and going only through internal vertices of T

�

u

that belong to S. Let y be the last

vertex in L. Using the same arguments as above we can show that y cannot belong to V (T

�

u

),

which is a contradiction. 2

11

We are ready to prove that the de�cit of tree T

�

is at most 1, and hence that the approxi-

mation ratio of algorithm tree is 2 as claimed in Theorem 4.1.

Lemma 4.5 For all vertices x in T

�

, de�cit(T

�

x

) � 1.

Proof. The proof is by contradiction. Let x be an internal vertex of T

�

such that T

�

x

is a

minimal tree of de�cit larger than one, i.e., de�cit(T

�

x

) > 1 and for all vertices v 6= x in T

�

x

,

de�cit(T

�

v

) � 1.

By the proof of Lemma 4.4 we know that x cannot belong to B

r

(T

�

x

). Also by the same

proof, if x 2 P (T

�

x

) then x must have at least three children: two in the same cluster as x and

one in a di�erent cluster. We trim the tree T

�

x

as described in the proof of Lemma 4.4 with the

only exception that for vertexx we keep three children u, v, and w as follows.

1. If x 2 A(T

�

x

), then choose u to be an exterior vertex and v and w to be roots of trees of

maximum de�cit 1.

2. If x 2 P (T

�

x

), then choose u to be a child that belongs to a cluster di�erent from x, and

v and w to be children in the same cluster as x and which are roots of trees of maximum

de�cit 1.

3. If x 2 V (T

�

x

)� A(T

�

x

)� P (T

�

x

), then choose u, v, and w to be roots of trees of maximum

de�cit 1.

Since x has at least two children which are roots of trees of de�cit 1, then at least two leaves

of T

�

x

belong to B

r

(T

�

x

). Let w

1

and w

2

be the �rst and second vertices from B

r

(T

�

x

) which are

included in some tree of F by algorithm tree. Let S be the set of vertices from T

�

x

which have

been added to forest F just before w

2

is included in some tree of F . Let L be a longest path

starting at w

1

and passing through internal vertices of T

�

x

which belong to S. Since by Lemma

4.4 every vertex in T

�

x

has degree at least three, we can use the same arguments as in the proof

of Lemma 4.4 to derive a contradiction. This proves that de�cit(T

�

x

) � 1 for all vertices x. 2

The approximation ratio stated in Theorem 4.1 is tight as the example in Figure 4 shows.

The spanning tree T

�

with maximum number of leaves is shown in Figure 4(b). This tree has

2k� 1 leaves, where the number of vertices in the graph is 3k+1. The tree found by algorithm

tree is shown in Figure 4(c) assuming that the �rst vertex selected by the algorithm is vertex r.

This tree has only k + 2 leaves.

5 Implementation Issues

In this section we brie
y describe how algorithm tree can be implemented to run in linear time.

We represent the input graph G = (V;E) as an adjacency list N . There is an entry N(v) for

each vertex v 2 V . Entry N(v) stores a linked list L(v) containing the neighbors of v, and a

variable t(v) (with initial value null) that will indicate the tree T

i

to which vertex v belongs in

12

r r r

(a) (b) (c)

1

2

k

k−1

Figure 4: Example showing that the approximation ratio of 2 is tight for algorithm tree. (a)

Input graph, (b) optimal tree, (c) tree selected by the algorithm.

F . For each neighbor u of v there is a node in L(v), this node stores two pointers, a pointer

to entry N(u) and a pointer to the cell that represents vertex v in the list L(u). We use a list

T

L

to store the leaves of the current tree. We also use the following three pointers: p

1

and p

2

which are used to scan list T

L

looking for a leaf that can be expanded with a rule of priority 1

or a rule of priority 2 respectively, and pointer p

3

is used to scan array N looking for a vertex of

degree at least 3.

To build forest F , we scanN with p

3

, computing for each entryN(v) the number of neighbors

of vertex v. When a vertex v of degree at least 3 is found, such a vertex is placed as the root

of a new tree T

v

. Then vertex v is expanded by placing all its neighbors as its children in T

v

.

Next, for each neighbor u of v, vertex v is removed from the list of neighbors of u in L(u), and

vertex u is marked as belonging to tree T

v

. All the neighbors of v are placed in T

L

.

Then list T

L

is scanned with pointer p

2

to �nd a leaf that can be expanded with a rule of

priority 2. For each entry T

L

(v), the list of neighbors of v is traversed and the neighbors that

already belong to T

v

are removed from the list. If a vertex v with at least 2 neighbors not in

T

v

is found, then it is expanded as described above. If no such vertex is found then the list

is scanned with pointer p

1

to �nd a vertex that can be expanded with rule 1. This process is

repeated until there are no more vertices in T

L

that can be expanded. When that happens, tree

T

v

is placed in F . Then list N is scanned again to �nd a vertex of degree at least 3 as described

above.

Note that the list of neighbors of a vertex is scanned at most three times, one with pointer

p

3

, one with p

2

, and one with p

1

, so the total time needed is O(m). Also the expansion of a

13

vertex takes time proportional to its degree, and therefore the total time needed to form forest

F is O(m).

Once the forest F is built, every tree T

i

2 F is contracted to a single vertex and depth �rst

search is used to �nd a spanning tree of the contracted graph. These edges are added to F to

form the spanning tree T . The total time needed by the algorithm is O(m).

6 Fixing a Set of Leaves

Consider now that the vertices in some set S � V are required to be leaves in a spanning tree

of G, and the problem now is to �nd a tree with maximum number of leaves subject to this

constraint. In this section we present a 5=2-approximation algorithm for the problem.

It is easy to check if a graph G has a spanning tree in which a given set of edges S are leaves.

There are two conditions that need to hold for such a spanning tree to exist. First, the graph

obtained by removing from G all vertices in S and all edges incident to them must be connected.

And second, every vertex in S must have at least one neighbor in V � S. Thus for the rest of

this section we will assume that there is at least one spanning tree having the vertices in S as

leaves.

Without loss of generality we can assume that S forms an independent set of G, i.e. there

are no edges having both endpoints in S. We can make this assumption since we are interested

only in spanning trees in which the vertices of S are leaves and none of these trees includes an

edge connecting two vertices from S.

Let S

1

� S be the set formed by the vertices of degree 1 in S. Let G

0

be the graph obtained

by removing from G the vertices in S � S

1

and all edges incident to them. Run algorithm tree

on graph G

0

and let T

0

be the tree that it �nds. Clearly all vertices of S

1

are leaves in T

0

. If

any vertex v 2 S � S

1

is adjacent to an internal vertex u of T

0

then v is placed as child of u in

T

0

. Let T

0

be the resulting tree.

Let S

0

� S be the set formed by the vertices in S which have not yet been added to T

0

. Note

that the neighbors of vertices in S

0

are all leaves of T

0

. We say that a subset C of leaves of T

0

covers the vertices in S

0

if every vertex in S

0

is adjacent to at least one vertex in C. Let C be

a minimal subset of leaves of T

0

that covers S

0

, i.e., for every vertex u 2 C there is at least one

vertex v 2 S

0

such that u is the only neighbor of S

0

in C. To build a spanning tree for G, we

place arbitrarily the vertices of S

0

as children of the vertices in C.

Let C

1

� C be the set of vertices in C with only one child, and let S

0

1

be the children of C

1

.

Since C is a minimal cover for S

0

then every vertex in S

0

1

is adjacent to only one vertex in C. To

see this assume that a vertex u 2 S

0

1

is adjacent to at least 2 vertices v; w 2 C, and let v 2 C

1

.

Then, C � fvg would also cover S, which cannot happen since C is a minimal set that covers

S. By the same argument, every vertex in S

0

1

is adjacent to at least one vertex in `(T

0

)� C.

Find a minimal set C

0

1

� `(T

0

)�C that covers S

0

1

. Note that C�C

1

[C

0

1

is a minimal cover

for S

0

. If jC

0

1

j < jC

1

j then place the vertices in S

0

1

as children of C

0

instead of as children of C

1

.

14

We let T be the spanning tree formed by this algorithm.

Lemma 6.1 `(T) � maxfjS

0

j; `(T

0

);

2

3

(j`(T

0

)j+ jS

0

j)g.

Proof. Trivially `(T) � jS

0

j since all vertices in S

0

are leaves of T . Let C be the minimal

cover for S

0

selected by our algorithm to attach the vertices of S

0

to the tree. Then jCj � jS

0

j,

and so `(T) = `(T

0

)� jCj+ jSj � `(T

0

).

We now show that `(T) �

2

3

(j`(T

0

)+ jS

0

j). Let C

1

be the set formed by all vertices in C that

have only one child, and let S

0

1

be the set of children of C

1

. Observe that jS

0

� S

0

1

j � 2jC � C

1

j

since every vertex in C � C

1

has at least two children from S

0

. Also, since every vertex in S

0

1

is adjacent to one vertex in C

1

and to at least one vertex in `(T

0

) � C, then by of the way in

which C was chosen it follows that j`(T

0

)� Cj � jC

1

j. Therefore,

3(jS

0

� S

0

1

j+ jC

1

j+ j`(T

0

)� Cj) � 2(jS

0

� S

0

1

j+ jC

1

j+ j`(T

0

)� Cj) + 2jC � C

1

j+ jC

1

j+ jC

1

j

= 2(jS

0

j � jS

0

1

j+ jC

1

j+ j`(T

0

)j)

= 2(jS

0

j+ j`(T

0

)j); because jS

0

1

j = jC

1

j:

Since the `(T) = jS

0

� S

0

1

j+ jC

1

j+ j`(T

0

)� Cj then `(T) �

2

3

(jSj+ j`(T

0

)j). 2

Given a graph G and a subset of vertices S let T

�

be a spanning tree of G with maximum

number of leaves and in which all vertices from S are leaves. Our algorithm �nds a tree T with

at least (2=5)-times the number of leaves in T

�

.

Theorem 6.1 `(T

�

)=`(T) � 5=2.

Proof. Let S

0

� S be as de�ned above and let G

0

be the graph obtained by removing from G all

vertices in S

0

and all edges incident to them. Let T

+

be a spanning tree of G

0

with maximum

number of leaves and such that all vertices in S�S

0

are leaves in it. Let T

0

be as de�ned above.

Then by Theorem 4.1, `(T

+

)=`(T

0

) � 2. Also, note that `(T

�

) � `(T

+

) + jS

0

j, hence

1. if jS

0

j � `(T

0

)=2, then by Lemma 6.1,

`(T

�

)

`(T)

�

`(T

+

) + jS

0

j

`(T

0

)

� 2 +

1

2

=

5

2

;

2. if jS

0

j � 2`(T

0

), then by Lemma 6.1,

`(T

�

)

`(T)

�

`(T

+

) + jS

0

j

jS

0

j

�

`(T

+

)

2`(T

0

)

+ 1 = 2;

3. if `(T

0

)=2 < jS

0

j < 2`(T

0

), then by Lemma 6.1,

`(T

�

)

`(T)

�

`(T

+

) + jS

0

j

2

3

(`(T

0

) + jS

0

j)

�

3

2

+

`(T

0

)

2

3

(`(T

0

) + jS

0

j)

�

3

2

+ 1 =

5

2

:

2

15

References

[1] W. Duckworth, P.E. Dunne, A.M. Gibbons, and M. Zito, Leafy spanning trees in hypercubes,

Technical Report CTAG-97008, 1997, University of Liverpool.

[2] Feige U, A threshold of lnn for approximating set-cover, 28th ACM Symposium on Theory

of Computing (1996), pp. 314{318.

[3] G. Galbiati, F. Ma�oli, and A. Morzenti, A short note on the approximability of the max-

imum leaves spanning tree problem, Information Processing Letters, 52 (1994), pp. 45{49.

[4] J.R. Griggs, D.J. Kleitman, and A. Shastri, Spanning trees with many leaves in cubic graphs,

Journal of Graph Theory, 13 (1989), pp. 669{695.

[5] S. Guha and S. Khuller, Approximation algorithms for connected dominating sets, Proceed-

ings of the Fourth Annual European Symposium on Algorithms (1996), pp. 179{193.

[6] S. Guha, and S. Khuller, Improved methods for approximating node weight Steiner trees and

connected dominating sets, Technical Report CS-TR-3849, 1997, University of Maryland.

[7] D.J. Kleitman and D.B. West, Spanning trees with many leaves, SIAM Journal on Discrete

Mathematics, 4 (1991), pp. 99{106.

[8] H. Lu and R. Ravi, The power of local optimization: approximation algorithms for

maximum-leaf spanning tree, Proceedings of the Thirtieth Annual Allerton Conference on

Communication, Control, and Computing, 1992, pp. 533{542.

[9] H. Lu and R. Ravi, A near-linear time approximation algorithm for maximum-leaf spanning

tree, Technical report CS-96-06, Brown University, 1996.

[10] C. Payan, M. Tchuente, and N.H. Xuong, Arbres avec un nombre de maximum de sommets

pendants, Discrete Mathematics, 49 (1984), pp. 267{273.

[11] J.A. Storer, Constructing full spanning trees for cubic graphs, Information Processing Let-

ters, 13 (1981), pp. 8{11.

16

