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Abstra
t

In divisible torsion-free abelian groups, the eÆ
ien
y of the 
an
ellative su-

perposition 
al
ulus 
an be greatly in
reased by 
ombining it with a variable

elimination algorithm that transforms every 
lause into an equivalent 
lause

without unshielded variables. We show that the resulting 
al
ulus is a de
ision

pro
edure for the theory of divisible torsion-free abelian groups.
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1 Introdu
tion

Equational reasoning in the presen
e of the asso
iativity and 
ommutativity

axioms is known to be diÆ
ult { theoreti
ally [4, 8℄, as well as pra
ti
ally [1,

9, 10, 11, 12, 13, 17℄. Using AC-uni�
ation and extended 
lauses the worst

ineÆ
ien
ies of a na��ve approa
h 
an be avoided, but still the extended


lauses lead to numerous variable overlaps { one of the most proli�
 types

of inferen
es in resolution or superposition style 
al
uli. Besides, minimal


omplete set of AC-uni�ers may have doubly exponential size. If the theory


ontains also the identity law

x+ 0 � x ; (U)

then AC-uni�
ation 
an be repla
ed by ACU-uni�
ation, but the minimal


omplete set is still simply exponential.

A substantial improvement 
an be observed when we 
onsider stru
tures

that satisfy also the 
an
ellation axiom

x+ y � x+ z ) y � z ; (K)

or the inverse axiom

x+ (�x) � 0 ; (Inv)

(whi
h implies (K)), that is, when we swit
h over from abelian semigroups

or monoids to abelian groups (ACUInv) or at least 
an
ellative abelian

monoids (ACUK). The 
an
ellative superposition 
al
ulus (Ganzinger and

Waldmann [6, 14℄) is a re�ned superposition 
al
ulus for 
an
ellative abelian

monoids whi
h requires neither expli
it inferen
es with the theory 
lauses

nor extended equations or 
lauses. Strengthened ordering 
onstraints lead

to a signi�
ant redu
tion of the number of variable overlaps, 
ompared with

traditional AC-
al
uli. Some variable overlaps remain ne
essary, however.

In (non-trivial) divisible torsion-free abelian groups, e. g., the rational

numbers and rational ve
tor spa
es, the abelian group axioms ACUInv are

extended by the torsion-freeness axioms

kx � ky ) x � y (T)

(for all k 2 N

>

0

), the divisibility axioms

1

k div-by

k

(x) � x (Div)

(for all k 2 N

>

0

), and the non-triviality axiom

2

a 6� 0 : (Nt)

1

In non-skolemized form: 8x 9y: ky � x for all k 2 N

>

0

.

2

In non-skolemized form: 9y: y 6� 0.
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Divisible torsion-free abelian groups (DTAGs) allow quanti�er elimina-

tion: For every quanti�ed formula over 0, +, and � there exists a quanti�er-

free formula that is equivalent modulo the theory axioms. In parti
ular,

every 
losed formula over this vo
abulary is provably true or false: the the-

ory of DTAGs is 
omplete and de
idable. Superposition 
al
uli, however,

work on formulae that do not 
ontain any existential quanti�ers, but that

may 
ontain free fun
tion symbols { possibly introdu
ed by skolemization,

possibly given initially. In the presen
e of free fun
tion symbols, there is

of 
ourse no way to eliminate all variables from a formula { not even all

universally quanti�ed ones { but we 
an at least give an e�e
tive method to

eliminate all unshielded variables, that is, all variables not o

urring below

any free fun
tion symbol. This elimination algorithm has been integrated

into the 
an
ellative superposition 
al
ulus in (Waldmann [16℄). The result-

ing 
al
ulus is refutationally 
omplete with respe
t to the axioms of divisible

torsion-free abelian groups and allows us to dispense with variable overlaps


ompletely.

Starting with Joyner [7℄, several resolution or superposition 
al
uli have

been shown to be de
ision pro
edures for 
ertain 
lasses of formulae (e.g.,

Ba
hmair, Ganzinger, and Waldmann [3℄, Ferm�uller et al. [5℄). As the the-

ory of DTAGs is de
idable, it is now a natural question to ask whether the


ombination of 
an
ellative superposition and variable elimination for un-

shielded universally quanti�ed variables is powerful enough to be usable as a

de
ision pro
edure for the theory of DTAGs. We show in this paper that this

is indeed the 
ase: The 
ombined 
al
ulus is refutationally 
omplete in the

presen
e of arbitrary free fun
tion symbols; and it is a de
ision pro
edure,

if all free fun
tion are the result of skolemization.

2 Preliminaries

We will �rst give a short overview over the 
an
ellative superposition 
al-


ulus and its spe
ialization for DTAGs. The reader is referred to (Wald-

mann [14, 16℄) for more te
hni
al details.

Throughout this paper we assume that our signature

3


ontains a binary

fun
tion symbol + and a 
onstant 0. If t is a term and n 2N, then nt is an

abbreviation for the n-fold sum t+ � � �+ t; in parti
ular, 0t = 0 and 1t = t.

A fun
tion symbol is 
alled free, if it is di�erent from 0 and +. A term is


alled atomi
, if it is not a variable and its top symbol is di�erent from +.

We say that a term t o

urs at the top of s, if there is a position o 2 pos(s)

su
h that sj

o

= t and for every proper pre�x o

0

of o, s(o

0

) equals +; the term

t o

urs in s below a free fun
tion symbol, if there is an o 2 pos(s) su
h that

3

The 
an
ellative superposition 
al
ulus as des
ribed in (Waldmann [14, 16℄) works in

a many-sorted framework. For the purposes of this paper, it is suÆ
ient to restri
t to the

one-sorted 
ase.
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sj

o

= t and s(o

0

) is a free fun
tion symbol for some proper pre�x o

0

of o. A

variable x is 
alled shielded in a 
lause C, if it o

urs at least on
e below a

free fun
tion symbol in C. Otherwise, x is 
alled unshielded.

We say that an ACU-
ompatible ordering � has the multiset property,

if whenever a ground atomi
 term u is greater than v

i

for every i in a �nite

non-empty index set I, then u �

P

i2I

v

i

.

From now on we will work only with ACU-
ongruen
e 
lasses, rather

than with terms. So all terms, equations, substitutions, inferen
e rules, et
.,

are to be taken modulo ACU, i.e., as representatives of their 
ongruen
e


lasses. The symbol � will always denote an ACU-
ompatible ordering that

has the multiset property and is total on ground ACU-
ongruen
e 
lasses.

4

Without loss of generality we assume that the equality symbol � is the

only predi
ate of our language. Hen
e a literal is either an equation t � t

0

or a negated equation t 6� t

0

. The symbol

:

� denotes either � or 6�. A 
lause

is a �nite multiset of literals, usually written as a disjun
tion.

Let A be a ground literal nu+

P

i2I

s

i

:

�mu+

P

j2J

t

j

, where u, s

i

, and

t

j

are atomi
 terms, n � m � 0, n � 1, and u � s

i

and u � t

j

for all i 2 I,

j 2 J . Then u is 
alled the maximal atomi
 term of A, denoted by mt(A).

The ordering �

L

on literals 
ompares lexi
ographi
ally �rst the maxi-

mal atomi
 terms of the literals, then the polarities (negative � positive),

then the multisets of all non-zero terms o

urring at the top of the liter-

als, and �nally the multisets 
onsisting of the left and right hand sides of

the literals. The ordering �

C

on 
lauses is the multiset extension of the

literal ordering �

L

. Both �

L

and �

C

are noetherian and total on ground

literals/
lauses.

We denote the entailment relation modulo equality and ACUKT by

j=

ACUKT

. In other words, fC

1

; : : : ; C

n

g j=

ACUKT

C

0

if and only if ACUKT[

fC

1

; : : : ; C

n

g j= C

0

.

3 Can
ellative Superposition

The 
an
ellative superposition 
al
ulus (Waldmann [14℄) is a refutation-

ally 
omplete variant of the standard superposition 
al
ulus (Ba
hmair and

Ganzinger [2℄) for sets of 
lauses that 
ontain the axioms ACUK and (op-

tionally) T. It requires neither extended 
lauses, nor expli
it inferen
es with

the axioms ACUKT, nor symmetrizations. Compared with standard super-

position or AC superposition 
al
uli, the ordering restri
tions of its inferen
e

rules are strengthened: Inferen
es are not only limited to maximal sides of

maximal literals, but also to maximal summands thereof. As shielded vari-

4

For ground terms, su
h an ordering 
an be obtained for instan
e from the re
ursive

path ordering with pre
eden
e f

n

� : : : � f

1

� + � 0 and multiset status for + by


omparing normal forms w. r. t. x+ 0 ! x and 0 + x! x. If 
lauses are fully abstra
ted

eagerly (
f. Se
t. 4), the 
ompatibility requirement be
omes void.

3



ables are non-maximal, this implies in parti
ular that there are no overlaps

with su
h variables.

The inferen
e system K of the 
an
ellative superposition 
al
ulus

5


on-

sists of the inferen
e rules 
an
ellation, equality resolution, standard superpo-

sition, 
an
ellative superposition, abstra
tion, and 
an
ellative equality fa
-

toring. Ground versions of these rules are given below.

The following 
onditions are 
ommon to all the inferen
e rules: Every

literal involved in some inferen
e must be maximal in the respe
tive premise

(ex
ept for the last but one literal in 
an
ellative equality fa
toring infer-

en
es). A positive literal involved in a superposition or abstra
tion inferen
e

must be stri
tly maximal in the respe
tive 
lause. In all superposition and

abstra
tion inferen
es, the left premise is smaller than the right premise. In

standard superposition and abstra
tion inferen
es, if s is a proper sum, then

t (or w, respe
tively) o

urs in a maximal atomi
 subterm of s.

Can
ellation

C

0

_ mu+ s

:

� m

0

u+ s

0

C

0

_ (m�m

0

)u+ s

:

� s

0

if m � m

0

� 1 and u � s, u � s

0

.

Equality Resolution

C

0

_ 0 6� 0

C

0

Standard Superposition

D

0

_ t � t

0

C

0

_ s[t℄

:

� s

0

D

0

_ C

0

_ s[t

0

℄

:

� s

0

if t o

urs below a free fun
tion symbol in s, and

s[t℄ � s

0

, t � t

0

.

Can
. Superposition

D

0

_ nu+ t � t

0

C

0

_ mu+ s

:

� s

0

D

0

_ C

0

_  s+ �t

0

:

� �t+  s

0

ifm� 1, n� 1,  =n=g
d(m;n), �=m=g
d(m;n),

and u � s, u � s

0

, u � t, u � t

0

.

Abstra
tion

D

0

_ nu+ t � t

0

C

0

_ s[w℄

:

� s

0

C

0

_ y 6� w _ s[y℄

:

� s

0

if n� 1, w=mu+ q o

urs in s immediately below

some free fun
tion symbol, m � 1, nu+ t is not a

subterm of w, and u � t, u � t

0

, s[w℄ � s

0

.

5

In [14℄, this inferen
e system is denoted by CS-Inf

N

>

0

.
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Can
. Eq. Fa
toring

C

0

_ nu+ t � n

0

u+ t

0

_ mu+ s � s

0

C

0

_  t+ �s

0

6� �s+  t

0

_ nu+ t � n

0

u+ t

0

if m� 1, n > n

0

� 0, � = n�n

0

,  =m= g
d(m; �),

� = �= g
d(m; �), and u � s, u � s

0

, u � t, u � t

0

.

The inferen
e system K is sound with respe
t to ACUKT. In other words,

for every inferen
e with premises C

1

; : : : ; C

n

and 
on
lusion C

0

, we have

fC

1

; : : : ; C

n

g j=

ACUKT

C

0

.

Lifting the inferen
e rules to non-ground 
lauses is relatively straightfor-

ward as long as we restri
t to 
lauses without unshielded variables. For the

inferen
e rules equality resolution and standard superposition, we pro
eed as

in the standard superposition 
al
ulus (Ba
hmair and Ganzinger [2℄). For

the inferen
e rules 
an
ellation, 
an
ellative superposition, and 
an
ellative

equality fa
toring, we have to take into a

ount that, in a 
lause C =C

0

_ A,

the maximal literal A need no longer have the form mu + s

:

� s

0

, where u

is the unique maximal atomi
 term. Rather, a non-ground literal su
h as

f(x) + 2f(y) + b 6� 
 may 
ontain several (distin
t but ACU-uni�able)

maximal atomi
 terms u

k

with multipli
ities m

k

, where k ranges over some

�nite non-empty index set K. We obtain thus A =

P

k2K

m

k

u

k

+ s

:

� s

0

,

where

P

k2K

m

k


orresponds to m in the ground literal above. As in the

standard superposition rule, the substitution � that uni�es all u

k

(and the


orresponding terms v

l

from the other premise) is applied to the 
on
lusion.

For instan
e, the 
an
ellative superposition rule has now the following form:

Can
ellative Superposition

D

0

_ A

2

C

0

_ A

1

(D

0

_ C

0

_ A

0

)�

if the following 
onditions are satis�ed:

{ A

1

=

P

k2K

m

k

u

k

+ s

:

� s

0

.

{ A

2

=

P

l2L

n

l

v

l

+ t � t

0

.

{ m =

P

k2K

m

k

� 1, n =

P

l2L

n

l

� 1.

{  = n= g
d(m;n), � = m= g
d(m;n).

{ u is one of the u

k

or v

l

(k 2 K, l 2 L).

{ � is a most general ACU-uni�er of all u

k

and v

l

(k 2 K; l 2 L).

{ u 6� s, u 6� s

0

, u 6� t, u 6� t

0

.

{ A

0

=  s+ �t

0

:

� �t+  s

0

.

The lifted versions of the rules 
an
ellation and 
an
ellative equality fa
-

toring are obtained analogously. The only inferen
e rule for whi
h lifting is

5



not so straightforward is the abstra
tion rule. Here we have to take into a
-


ount that the term to be abstra
ted out may be a sum 
ontaining variables

at the top [14℄.

In the presen
e of unshielded variables, it is still possible to devise (more


ompli
ated) lifted inferen
e rules that produ
e only �nitely many 
on
lu-

sions for a given tuple of premises. We do not repeat these rules here, as the

additional theory axioms DivInvNt make it possible to eliminate unshielded

variables 
ompletely. The elimination of unshielded variables happens in two

stages. First we show that every 
lause is logi
ally equivalent to a 
lause

without unshielded variables. Then this elimination algorithm has to be in-

tegrated into the 
an
ellative superposition 
al
ulus. Our main tool for the

se
ond step is the 
on
ept of redundan
y.

Let C

0

; C

1

; : : : ; C

k

be 
lauses and let � be a substitution su
h that C

i

�

is ground for all i 2 f1; : : : ; kg. If there are inferen
es

C

k

: : : C

1

C

0

and

C

k

� : : : C

1

�

C

0

�

then the latter is 
alled a ground instan
e of the former.

Let N be a set of 
lauses, let N be the set of ground instan
es of 
lauses

in N . An inferen
e is 
alled ACUKT-redundant with respe
t to N if for

ea
h of its ground instan
es with 
on
lusion C

0

� and maximal premise C�

we have fD 2 N j D �

C

C� g j=

ACUKT

C

0

�.

6

A 
lause C is 
alled ACUKT-

redundant with respe
t to N , if for every ground instan
e C�, fD 2 N j

D �

C

C� g j=

ACUKT

C�.

A set N of 
lauses is 
alled saturated with respe
t to an inferen
e system

and a redundan
y 
riterion, if every inferen
e from 
lauses in N is redundant

with respe
t to N .

Theorem 3.1 The inferen
e system K is refutationally 
omplete with re-

spe
t to ACUKT, that is, a K-saturated set of 
lauses is unsatis�able modulo

ACUKT if and only if it 
ontains the empty 
lause (Waldmann [14℄).

One appli
ation of the redundan
y 
on
ept is simpli�
ation: A prover

produ
es a saturated set of 
lauses by 
omputing inferen
es a

ording to

some fair strategy and adding the 
on
lusions of non-redundant inferen
es

to the 
urrent set of 
lauses. At any time of the saturation pro
ess, the

prover is permitted to repla
e a 
lause by an equivalent set of new 
lauses,

provided the new 
lauses make the simpli�ed 
lause redundant. As we will

see later, in the 
al
ulus for DTAGs, redundan
y is already essential to prove

the refutational 
ompleteness of the inferen
e rules themselves.

6

For abstra
tion inferen
es one has to 
onsider all ground instan
es C

0

�� of C

0

� = y 6�

w� _ C

0

0

�[y℄ with y� � w�.

6



4 Variable Elimination: The Logi
al Side

It is well-known that the theory of DTAGs allows quanti�er elimination:

For every quanti�ed formula over 0, +, and � there exists an equivalent

quanti�er-free formula. In the presen
e of free fun
tion symbols, there is of


ourse no way to eliminate all variables from a 
lause, but we 
an at least

give an e�e
tive method to eliminate all unshielded variables.

Let x be a variable. We de�ne a binary relation !

x

over 
lauses by

Can
elVar C

0

_ mx+ s

:

� m

0

x+ s

0

!

x

C

0

_ (m�m

0

)x+ s

:

� s

0

if m � m

0

� 1.

ElimNeg C

0

_ mx+ s 6� s

0

!

x

C

0

if m � 1 and x does not o

ur in C

0

; s; s

0

.

ElimPos C

0

_ m

1

x+ s

1

� s

0

1

_ : : : _ m

k

x+ s

k

� s

0

k

!

x

C

0

if m

i

� 1 and x does not o

ur in C

0

; s

i

; s

0

i

, for 1 � i � k.

Coales
e C

0

_ mx+ s 6� s

0

_ nx+ t

:

� t

0

!

x

C

0

_ mx+ s 6� s

0

_  t+ �s

0

:

�  t

0

+ �s

if m � 1, n � 1,  = m= g
d(m;n), � = n= g
d(m;n), and x

does not o

ur at the top of s; s

0

; t; t

0

.

The relation!

x

is noetherian. Let the binary relation!

elim

over 
lauses

be de�ned in su
h a way that C

0

!

elim

C

1

if and only if C

0


ontains an

unshielded variable x and C

1

is a normal form of C

0

with respe
t to !

x

.

Then !

elim

is again noetherian. For any 
lause C, let elim(C) denote some

(arbitrary but �xed) normal form of C with respe
t to the relation !

elim

.

Lemma 4.1 For every 
lause C, elim(C) 
ontains no unshielded variables.

Lemma 4.2 For every 
lause C, fCg [ DivInvNt j=

ACUKT

elim(C) and

felim(C)g j=

ACUKT

C. For every ground instan
e C�, felim(C)�g j=

ACUKT

C�.

Using the te
hnique sket
hed so far, every 
lause C

0


an be transformed

into a 
lause elim(C

0

) that does not 
ontain unshielded variables, follows

from C

0

and the divisible torsion-free abelian group axioms, and implies

C

0

modulo ACUKT. Obviously, we 
an perform this transformation for all

initially given 
lauses before we start the saturation pro
ess. However, the

set of 
lauses without unshielded variables is not 
losed under the inferen
e

system K, i.e., inferen
es from 
lauses without unshielded variables may

produ
e 
lauses with unshielded variables. To eliminate these 
lauses during

the saturation pro
ess, it is not suÆ
ient that they follow logi
ally from some

other 
lauses: redundan
y requires that they follow from some suÆ
iently

7



small 
lauses. Unfortunately, under 
ertain 
ir
umstan
es the transformed


lause elim(C

0

) may not be small enough. Hen
e, to integrate the variable

elimination algorithm into the 
an
ellative superposition 
al
ulus, it has to

be supplemented by a 
ase analysis te
hnique.

5 Variable Elimination: The Operational Side

Let � be an inferen
e. We 
all the unifying substitution � that is 
omputed

during � and applied to the 
on
lusion the pivotal substitution of �. (For

abstra
tion inferen
es and all ground inferen
es, the pivotal substitution is

the identity mapping.) If A is the last literal of the last premise of �, we 
all

A� the pivotal literal of �. Finally, if u

0

is the atomi
 term that is 
an
elled

out in �, or in whi
h some subterm is repla
ed or abstra
ted out,

7

then we 
all

u

0

� the pivotal term of �. Pivotal terms have two important properties: First,

whenever an inferen
e � from 
lauses without unshielded variables produ
es

a 
on
lusion with unshielded variables, then all these unshielded variables

o

ur in the pivotal term of �. Se
ond, no atomi
 term in the 
on
lusion of

� 
an be larger than the pivotal term of �.

A 
lause C is 
alled fully abstra
ted, if no non-variable term o

urs

below a free fun
tion symbol in C. Every 
lause C 
an be transformed into

an equivalent fully abstra
ted 
lause abs(C) by iterated rewriting

C[f(: : : ; t; : : : )℄ ! x 6� t _ C[f(: : : ; x; : : : )℄ ;

where x is a new variable and t is a non-variable term o

urring immediately

below the free fun
tion symbol f in C. It should be noted that the variable

elimination algorithm preserves full abstra
tion, so that for every 
lause C,

elim(abs(C)) is a logi
ally equivalent 
lause that is fully abstra
ted and does

not 
ontain unshielded variables.

In the sequel we assume that every 
lause C in the input of the inferen
e

system is repla
ed by elim(abs(C)) before we start the saturation pro
ess.

The inferen
e system D
abs

that we will des
ribe now preserves both prop-

erties: the set of all fully abstra
ted 
lauses without unshielded variables is


losed under D
abs

. The system D
abs

is given by two meta-inferen
e rules:

Eliminating Inferen
e

C

n

: : : C

1

elim(C

0

)

if the following 
ondition is satis�ed:

7

More pre
isely, u

0

is the maximal atomi
 subterm of s 
ontaining t (or w) in standard

superposition or abstra
tion inferen
es, and the term u in all other inferen
es.

8



{

C

n

: : : C

1

C

0

is a non-abstra
tion and non-standard superposition K-

inferen
e.

8

Instantiating Inferen
e

C

n

: : : C

1

C

0

�

if the following 
onditions are satis�ed:

{

C

n

: : : C

1

C

0

is a non-abstra
tion and non-standard superposition K-

inferen
e with pivotal literal A and pivotal term u.

{ The multiset di�eren
e elim(C

0

) n C

0


ontains a literal A

1

with the

same polarity as A.

{ An atomi
 term u

1

o

urs at the top of A

1

.

{ � is 
ontained in a minimal 
omplete set of ACU-uni�ers of u and u

1

.

The redundan
y of D
abs

-inferen
es is de�ned in a slightly 
ompli
ated

way. Essentially, a D
abs

-inferen
e is redundant if suÆ
iently many ground

instan
es of the K-inferen
e on whi
h it is based are redundant. For our

purposes, it is suÆ
ient to know that any inferen
e is redundant with respe
t

to a set N of 
lauses as soon as its 
on
lusion (or a simpli�ed version thereof)

is present in N .

Theorem 5.1 If a set of fully abstra
ted 
lauses is saturated with respe
t

to D
abs

and none of the 
lauses 
ontains unshielded variables, then it is

also saturated with respe
t to K, and it is unsatis�able modulo ACUKT [

DivInvNt if and only if it 
ontains the empty 
lause (Waldmann [14, 16℄).

If all 
lauses are fully abstra
ted, then the terms that have to be 
om-

pared during the saturation have the property that they do not 
ontain the

operator +. In this situation, the requirement that the ordering � has to

be ACU-
ompatible be
omes void, and we may use an arbitrary redu
tion

ordering over terms not 
ontaining + that is total on ground terms and

for whi
h 0 is minimal. As every ordering of this kind 
an be extended to

an ordering that is ACU-
ompatible and has the multiset property (Wald-

mann [15℄), the 
ompleteness proof is still justi�ed.

8

In the one-sorted 
ase 
onsidered in this paper, standard superposition inferen
es from

fully abstra
ted 
lauses are impossible. In the general many-sorted 
ase, standard super-

position inferen
es must not be ignored.

9



6 De
iding the Theory of DTAGs

A refutationally 
omplete 
al
ulus derives a 
ontradi
tion (and terminates)

whenever the set of input formulae is in
onsistent. To show that a refuta-

tionally 
omplete 
al
ulus is a
tually a de
ision pro
edure, one has to prove

that it terminates even on 
onsistent inputs. Following this general s
heme,

we will now demonstrate that the 
al
ulus D
abs

is a de
ision pro
edure for

the theory of divisible torsion-free abelian groups.

Let us denote by D the 
lass of all 
losed �rst-order formulae with arbi-

trary quanti�ers and logi
al 
onne
tives and 
ontaining not more than the

fun
tion symbols + (binary), 0 (
onstant), � (unary), div-by

k

(unary) for

k 2 N

>

0

, and the binary predi
ate symbol �. Given a formula F 2 D, our

task is to de
ide whether F is equivalent to true or to false with respe
t to

the theory of divisible torsion-free abelian groups. As the theory of DTAGs

is 
omplete, every formula in D is equivalent either to true or to false, hen
e

F is equivalent to true if and only if it is satis�able.

We 
an �rst of all eliminate the symbols � and div-by

k

from F by re-


ursively repla
ing any atom s[�t℄ � s

0

by 8x(: x + t � 0 _ s[x℄ � s

0

)

and any atom s[div-by

k

(t)℄ � s

0

by 8x(: kx � t _ s[x℄ � s

0

), where x is

a new variable. The resulting formula F

1

is then 
onverted into a formula

F

2

in prenex normal form. By skolemization, F

2


an be further translated

into a formula F

3

without existentially quanti�ed variables, su
h that F

3

is satis�able if and only if F is satis�able. Skolemization repla
es the ex-

istentially quanti�ed variables of F

2

by terms f

k

(x

1

; : : : ; x

i

), where the x

j

are universally quanti�ed variables and f

k

is a new free fun
tion symbol.

Finally, the formula F

3


an be transformed into 
onjun
tive normal form,

whi
h we represent as a �nite set of 
lauses. This set of 
lauses is a subset

of the 
lass D




de�ned as follows: A 
lause C is 
ontained in D




if and only

if there exists a �nite sequen
e of distin
t variables x

1

; : : : ; x

n

su
h that, for

every literal s

:

� s

0

in C, both s and s

0

are sums

P

n

k

t

k

, and ea
h t

k

is

either a variable x

i

or an atomi
 term f(x

1

; : : : ; x

i

) for some i � n. The


lass of all 
lauses C in D




without unshielded variables is denoted by D

elim




.

We 
laim that there is a strategy for D
abs

-superposition that is guaranteed

to terminate on every �nite subset of D

elim




. Termination implies that with

this strategy D
abs

-superposition be
omes a de
ision pro
edure for the satis-

�ability of �nite subsets of D

elim




(and hen
e of formulae in D) with respe
t

to ACUKT [DivInvNt.

In the rest of this paper, we assume � to be a lexi
ographi
 path or-

dering based on a pre
eden
e relation that respe
ts the arity of fun
tion

symbols (greater arity implying higher pre
eden
e). Apart from satisfying

this restri
tion, the pre
eden
e 
an be arbitrary (but has to be total). With-

out loss of generality, we assume that the fun
tion symbols o

urring in the

input 
lauses are f

m

� � � � � f

1

. We note that f

j

(x

1

; : : : ; x

l

) � f

k

(x

1

; : : : ; x

i

)

if and only if f

j

� f

k

if and only if j > k.

10



In the one-sorted 
ase, the inferen
e system D
abs


onsists of the elimi-

nating and the instantiating variants of the rules 
an
ellation, equality reso-

lution, 
an
ellative superposition, and 
an
ellative equality fa
toring. We will

show that for the spe
ial 
lass of 
lauses D

elim




, instantiating inferen
es are

not needed:

Lemma 6.1 Every D
abs

-inferen
e from 
lauses in D

elim




is an eliminating

inferen
e.

Proof. Assume that there is an instantiating D
abs

-inferen
e

C

n

: : : C

1

C

0

�

with premises in D

elim




. Then

C

n

: : : C

1

C

0

is a K-inferen
e with pivotal literal A, pivotal term u, and pivotal substitu-

tion �. Furthermore, the multiset di�eren
e elim(C

0

) n C

0


ontains a literal

A

1

with the same polarity as A, and u� = u

1

� for some atomi
 term u

1

o
-


urring at the top of A

1

. As elim(C

0

) 6=C

0

, the 
lause C

0

must 
ontain some

unshielded variable x, and sin
e the premises have no unshielded variables,

x must o

ur in the pivotal term u. Now, as the premises C

i

are 
lauses in

D

elim




, there exists a �xed list of variables x

1

; x

2

; : : : su
h that all atomi


terms in C

i

�, and thus in C

0

and elim(C

0

), have the form f

j

(x

1

; : : : ; x

l

) for

some j and l. Consequently, any two atomi
 terms in C

i

�, C

0

, and elim(C

0

)

are either equal or not uni�able. By assumption, u and u

1

have the uni�er

� , hen
e u = u

1

. So x o

urs in u

1

, and thus in an atomi
 term in elim(C

0

),

and thus in an atomi
 term in C

0

. Hen
e x is shielded in C

0

, whi
h refutes

our assumption. 2

For a 
lause C, let sfa
t(C) be the 
lause obtained from C by synta
ti


fa
toring, that is, by repla
ing every repeated literal A _ : : : _ A by A. Let

s
an
(C) be the 
lause obtained from C by synta
ti
 
an
ellation, that is,

by repla
ing every literal s+ t

:

� s

0

+ t with non-zero t by s

:

� s

0

.

Unlike synta
ti
 fa
toring, synta
ti
 
an
ellation may introdu
e un-

shielded variables (if the term that was 
an
elled out was the last term

shielding some variable). During elimination of these unshielded variables,

the Coales
e rule may again produ
e synta
ti
ally equal terms on both sides

of a literal. Let the binary relation !

s
e

over 
lauses be de�ned in su
h a

way that C

0

!

s
e

C

1

if and only if C

1

= elim(s
an
(C)) and C

1

6= C

0

. It

is easy to show that !

s
e

terminates. Let us denote the normal form of a


lause C with respe
t to !

s
e

by s
an


�

(C), and let simp(C) be the 
lause

sfa
t(s
an


�

(C)).

11



Lemma 6.2 For every 
lause C in D

elim




, repla
ing C by simp(C) is a sim-

pli�
ation.

9

In des
riptions of resolution or paramodulation style inferen
e systems,

one assumes 
onventionally that all 
lauses are variable disjoint, so that

overlapping terms or literals 
an always be uni�ed in the inferen
e rules. To

simplify the termination proof, we will exploit the fa
t that the parti
ular

stru
ture of D

elim




allows us to use quite the opposite approa
h: Consider a

D
abs

-inferen
e from two 
lauses C

2

and C

1

in D

elim




. During this inferen
e,

the maximal atomi
 term of C

2

, say f

k

(x

00

1

; : : : ; x

00

i

), and the maximal atomi


term of C

1

, say f

k

(x

0

1

; : : : ; x

0

i

), are overlapped. By de�nition of the ordering

and of the 
lass D

elim




, the set of variables of C

1

is exa
tly fx

0

1

; : : : ; x

0

i

g, and

all atomi
 terms in C

1

have the form f

j

(x

0

1

; : : : ; x

0

l

) with j � k and l � i (and

analogously for C

2

). Therefore, essentially the same inferen
e is also possible,

if we assume that all 
lauses share the same variables x

1

; x

2

; : : : , and all non-

variable terms o

urring in the 
lause set have the form f

j

(x

1

; : : : ; x

l

) for

some j and l. The pivotal substitution 
an then always be assumed to be

the identity mapping, and it is trivial to 
he
k that the 
on
lusion of any

D
abs

-inferen
e uses again the variables x

1

; x

2

; : : : in the required way.

To saturate a given �nite subset of the 
lass D

elim




, we use the following

strategy:

Let N be the set of all input 
lauses.

Let f

m

� � � � � f

1

be the fun
tion symbols o

urring in N .

Let N

�

m+1

= f sfa
t(C) j C 2 N g.

For k = m;m�1; : : : ; 1:

If N

�

k+1

is de�ned, let N

0

k

be the set obtained from N

�

k+1

by repla
ing

every 
lause C whose maximal fun
tion symbol is f

k

by simp(C).

For r = 0; 1; : : : :

If N

r

k

is de�ned and if there are non-redundant 
an
ellative su-

perposition or 
an
ellative equality fa
toring D
abs

-inferen
es from


lauses in N

r

k

with pivotal term f

k

(x

1

; : : : ; x

i

), pi
k one of them

\don't 
are" non-deterministi
ally, let C be its 
on
lusion, and let

N

r+1

k

= N

r

k

[ fsfa
t(C)g;

if N

r

k

is de�ned and if there is no su
h inferen
e, let N

�

k

= N

r

k

.

If N

�

1

is de�ned, let N

�

be the union of N

�

1

and the set of all 
on-


lusions of all non-redundant equality resolution D
abs

-inferen
es from


lauses in N

�

1

.

Lemma 6.3 Let k 2 f1; : : : ;mg. If N

�

k+1

is de�ned, then there exists an

r 2 N su
h that there is no non-redundant 
an
ellative superposition or


an
ellative equality fa
toring D
abs

-inferen
e from 
lauses inN

r

k

with pivotal

term f

k

(x

1

; : : : ; x

i

).

9

The restri
tion to 
lauses in D

elim




is 
ru
ial for the 
orre
tness of this lemma.
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Proof. Every D
abs

-inferen
e is redundant with respe
t to N

r

k

if its 
on-


lusion C or an equivalent smaller 
lause, su
h as sfa
t(C), is 
ontained in

N

r

k

. All in
lusions in the sequen
e N

0

k

� N

1

k

� � � � � N

r

k

� : : : must there-

fore be stri
t. A 
lause 
an parti
ipate in an inferen
e with pivotal term

f

k

(x

1

; : : : ; x

i

) only if it 
ontains f

k

and if it does not 
ontain any f

j

with

j > k, or in other words, if f

k

(x

1

; : : : ; x

i

) is its maximal atomi
 term. The

set of all su
h 
lauses in N

0

k

is obviously �nite. We will show below that

the number of su
h 
lauses in

S

r

N

r

k

is �nitely bounded. From these �nitely

many 
lauses only �nitely many 
on
lusions of inferen
es 
an be derived,

hen
e

S

r

N

r

k

must be �nite. As the in
lusions in the sequen
e are stri
t, the

sequen
e is �nite.

It remains to be proved that the number of 
lauses with maximal atomi


term f

k

(x

1

; : : : ; x

i

) in

S

r

N

r

k

is �nitely bounded. Let M be the subset of N

0

k


ontaining all 
lauses with maximal atomi
 term f

k

(x

1

; : : : ; x

i

). Let L be

the set of all literals of 
lauses in M , let L

1

be the set of all literals in L in

whi
h f

k

o

urs, and let L

0

= L n L

1

. Note that there is no literal in L

1

in

whi
h f

k

o

urs on both sides. Let L

0

0

be the set of all literals A, su
h that

there is a 
an
ellative superposition K-inferen
e

A

2

A

1

A

with literals A

1

and A

2

from L

1

. Let L

00

0

be the set of all literals A, su
h

that there is a 
an
ellative equality fa
toring K-inferen
e

A

2

_ A

1

A _ A

2

with literals A

1

and A

2

from L

1

. Note that f

k

does not o

ur in literals

from L

0

0

[ L

00

0

. Let M

�

be the set of all 
lauses 
onsisting of literals in

L

0

[ L

0

0

[ L

00

0

[ L

1

(without dupli
ated literals).

Consider an arbitrary eliminating 
an
ellative superposition or 
an
ella-

tive equality fa
toring D
abs

-inferen
e

C

n

: : : C

1

elim(C

0

)

from premises in M

�

with pivotal term f

k

(x

1

; : : : ; x

i

) and 
on
lusion D =

elim(C

0

). If f

k

(x

1

; : : : ; x

i

) o

urs in sfa
t(D), then it o

urs also in C

0

. In

this 
ase, all variables in C

0

are shielded, thus elim(C

0

) = C

0

. Sin
e

C

n

: : : C

1

C

0

is a 
an
ellative superposition or 
an
ellative equality fa
toring K-inferen
e,

sfa
t(D) = sfa
t(C

0

) is again 
ontained in M

�

. As M � M

�

, we 
an 
on-


lude that all 
lauses in

S

r

N

r

k

with maximal atomi
 term f

k

(x

1

; : : : ; x

i

) are


ontained in M

�

. Sin
e M

�

is �nite, this 
ompletes the proof. 2
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Corollary 6.4 N

�

k

and N

�

are de�ned for every k 2 f1; : : : ;m+ 1g.

Corollary 6.5 N ` N

�

m+1

` N

0

m

` N

1

m

` : : : ` N

�

m

` : : : ` N

0

1

` N

1

1

` : : : `

N

�

1

` N

�

is a �nite theorem proving derivation; N and N

�

are equivalent

modulo ACUKT [DivInvNt.

Lemma 6.6 Let 1 � k � j �m. Then all D
abs

-inferen
es with pivotal term

f

j

(x

1

; : : : ; x

l

) from 
lauses in N

�

k

are redundant with respe
t to N

�

k

.

Proof. By indu
tion, we may assume that all D
abs

-inferen
es with pivotal

term f

p

(x

1

; : : : ; x

l

), p > k from 
lauses in N

�

k+1

are redundant with respe
t

to N

�

k+1

.

The 
lauses in N

�

k

n N

�

k+1


ontain only fun
tion symbols f

p

with p �

k. Therefore, every D
abs

-inferen
e from 
lauses in N

�

k

with pivotal term

f

p

(x

1

; : : : ; x

i

) and p > k is an inferen
e from 
lauses in N

�

k+1

, hen
e it is

redundant with respe
t to N

�

k+1

. As all 
lauses in N

�

k+1

nN

�

k

are redundant

with respe
t to N

�

k+1

, every inferen
e that is redundant with respe
t to

N

�

k+1

is also redundant with respe
t to N

�

k

. Therefore it suÆ
es to show

that all D
abs

-inferen
es with pivotal term f

k

(x

1

; : : : ; x

i

) from 
lauses in N

�

k

are redundant with respe
t to N

�

k

.

It is easy to 
he
k that literals with f

k

o

urring on both sides 
an-

not o

ur at all in 
lauses in N

�

k

n N

0

k

, and that they 
an o

ur in a


lause C in N

0

k

only if some f

p

with p > k o

urs in C. Hen
e there are

no 
an
ellation inferen
es with pivotal term f

k

(x

1

; : : : ; x

i

) from 
lauses in

N

�

k

= N

0

k

[ (N

�

k

n N

0

k

). This means that all inferen
es from 
lauses in N

�

k

with pivotal term f

k

(x

1

; : : : ; x

i

) are either 
an
ellative superposition or 
an-


ellative equality fa
toring inferen
es, hen
e they are redundant with respe
t

to N

�

k

by 
onstru
tion of N

�

k

. 2

Theorem 6.7 All inferen
es from 
lauses in N

�

are redundant with respe
t

to N

�

.

Proof. By the previous lemma, all D
abs

-inferen
es with pivotal terms

f

j

(x

1

; : : : ; x

l

) from 
lauses in N

�

1

are redundant with respe
t to N

�

1

(and

hen
e with respe
t to N

�

). Furthermore, by 
onstru
tion of N

�

, all equal-

ity resolution inferen
es from 
lauses in N

�

1

are redundant with respe
t to

N

�

. Sin
e equality resolution applies only to 
lauses with maximal literals

0 6� 0 and sin
e no 
lause in N

�

1


ontains repeated literals, no inferen
es are

possible from 
lauses in N

�

nN

�

1

. 2

As N

�

is saturated, it 
ontains the empty 
lause if and only if it is

unsatis�able modulo ACUKT [ DivInvNt. Sin
e N and N

�

are equivalent

modulo the theory axioms, the main theorem of the this paper is proved:

Theorem 6.8 A �nite set N � D

elim




is unsatis�able modulo ACUKT [

DivInvNt if and only if the saturation strategy derives the empty 
lause

from N .
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7 Con
lusions

In previous work, we have demonstrated that the 
an
ellative superposition


al
ulus K 
an be augmented by a variable elimination algorithm for DTAGs.

The resulting 
al
ulus D
abs

is refutationally 
omplete with respe
t to the

axioms of divisible torsion-free abelian groups and allows us to dispense with

variable overlaps altogether. As variable overlaps are one of the most proli�


types of inferen
es in resolution or superposition style 
al
uli, integration of

the variable elimination algorithm leads to a dramati
ally redu
ed sear
h

spa
e 
ompared with the usual 
an
ellative superposition 
al
ulus or, even

worse, AC or ACU superposition 
al
uli.

Sin
e 1976 several resolution or superposition 
al
uli have been shown to

be de
ision pro
edures for 
ertain 
lasses of formulae (e.g., [3, 5, 7℄). If the


al
uli in question are known to be refutationally 
omplete, then showing

that they are a
tually de
ision pro
edures amounts to proving that they ter-

minate even on 
onsistent inputs. In the present paper we have demonstrated

that the 
al
ulus D
abs

is powerful enough to solve the de
ision problem for

divisible torsion-free abelian groups. Following the general s
heme des
ribed

above, the termination proof is pe
uliar in two respe
ts: First, we require

that the set of 
lauses is saturated in a strati�ed way. Termination follows

from the two fa
ts that the number of strata is �nite and that the number

of new 
lauses derived during ea
h stratum is �nite. Se
ond, the parti
ular

stru
ture of the literals and 
lauses makes it possible to assume that all


lauses share the same variables and that the pivotal substitution is always

the identity mapping { in some sense, variables are treated as if they were


onstants.

What remains open at present is the pre
ise 
omputational 
omplexity of

our de
ision pro
edure. The time bound that 
an be derived in a straight-

forward manner from the saturation strategy is non-elementary. Possibly

signi�
antly better bounds 
an be obtained for sub
lasses of D

elim




, but this

is still a matter of further resear
h.
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