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Abstract

In divisible torsion-free abelian groups, the efficiency of the cancellative su-
perposition calculus can be greatly increased by combining it with a variable
elimination algorithm that transforms every clause into an equivalent clause
without unshielded variables. We show that the resulting calculus is a decision
procedure for the theory of divisible torsion-free abelian groups.
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1 Introduction

Equational reasoning in the presence of the associativity and commutativity
axioms is known to be difficult — theoretically [4, 8], as well as practically [1,
9, 10, 11, 12, 13, 17]. Using AC-unification and extended clauses the worst
inefficiencies of a naive approach can be avoided, but still the extended
clauses lead to numerous variable overlaps — one of the most prolific types
of inferences in resolution or superposition style calculi. Besides, minimal
complete set of AC-unifiers may have doubly exponential size. If the theory
contains also the identity law

r+0~zx, (U)

then AC-unification can be replaced by ACU-unification, but the minimal
complete set is still simply exponential.

A substantial improvement can be observed when we consider structures
that satisfy also the cancellation axiom

r+yxr+z = yxz, (K)
or the inverse axiom
x4+ (—z) =0, (Inv)

(which implies (K)), that is, when we switch over from abelian semigroups
or monoids to abelian groups (ACUInv) or at least cancellative abelian
monoids (ACUK). The cancellative superposition calculus (Ganzinger and
Waldmann [6, 14]) is a refined superposition calculus for cancellative abelian
monoids which requires neither explicit inferences with the theory clauses
nor extended equations or clauses. Strengthened ordering constraints lead
to a significant reduction of the number of variable overlaps, compared with
traditional AC-calculi. Some variable overlaps remain necessary, however.

In (non-trivial) divisible torsion-free abelian groups, e.g., the rational
numbers and rational vector spaces, the abelian group axioms ACUInv are
extended by the torsion-freeness axioms

kr~ky = z=~y (T)
(for all k € N7?), the divisibility axioms!

k div-byg(z) ~ x (Div)
2

(for all k € N”?), and the non-triviality axiom

a?0. (Nt)

Tn non-skolemized form: Vz 3y: ky ~ « for all k € N”°.
*In non-skolemized form: Jy: y #% 0.



Divisible torsion-free abelian groups (DTAGs) allow quantifier elimina-
tion: For every quantified formula over 0, 4+, and = there exists a quantifier-
free formula that is equivalent modulo the theory axioms. In particular,
every closed formula over this vocabulary is provably true or false: the the-
ory of DTAGs is complete and decidable. Superposition calculi, however,
work on formulae that do not contain any existential quantifiers, but that
may contain free function symbols — possibly introduced by skolemization,
possibly given initially. In the presence of free function symbols, there is
of course no way to eliminate all variables from a formula — not even all
universally quantified ones — but we can at least give an effective method to
eliminate all unshielded variables, that is, all variables not occurring below
any free function symbol. This elimination algorithm has been integrated
into the cancellative superposition calculus in (Waldmann [16]). The result-
ing calculus is refutationally complete with respect to the axioms of divisible
torsion-free abelian groups and allows us to dispense with variable overlaps
completely.

Starting with Joyner [7], several resolution or superposition calculi have
been shown to be decision procedures for certain classes of formulae (e.g.,
Bachmair, Ganzinger, and Waldmann [3], Fermiiller et al. [5]). As the the-
ory of DTAGs is decidable, it is now a natural question to ask whether the
combination of cancellative superposition and variable elimination for un-
shielded universally quantified variables is powerful enough to be usable as a
decision procedure for the theory of DTAGs. We show in this paper that this
is indeed the case: The combined calculus is refutationally complete in the
presence of arbitrary free function symbols; and it is a decision procedure,
if all free function are the result of skolemization.

2 Preliminaries

We will first give a short overview over the cancellative superposition cal-
culus and its specialization for DTAGs. The reader is referred to (Wald-
mann [14, 16]) for more technical details.

Throughout this paper we assume that our signature® contains a binary
function symbol + and a constant 0. If ¢ is a term and n € N, then nt is an
abbreviation for the n-fold sum ¢ + --- 4 ¢; in particular, 0¢ = 0 and 1t = ¢.

A function symbol is called free, if it is different from 0 and +. A term is
called atomic, if it is not a variable and its top symbol is different from +.
We say that a term ¢ occurs at the top of s, if there is a position o € pos(s)
such that s|, =t and for every proper prefix o' of 0, s(0') equals +; the term
t occurs in s below a free function symbol, if there is an o € pos(s) such that

3The cancellative superposition calculus as described in (Waldmann [14, 16]) works in
a many-sorted framework. For the purposes of this paper, it is sufficient to restrict to the
one-sorted case.



slo =t and s(0') is a free function symbol for some proper prefix o' of 0. A
variable z is called shielded in a clause C, if it occurs at least once below a
free function symbol in C. Otherwise, z is called unshielded.

We say that an ACU-compatible ordering > has the multiset property,
if whenever a ground atomic term u is greater than v; for every i in a finite
non-empty index set I, then u > >, v;.

From now on we will work only with ACU-congruence classes, rather
than with terms. So all terms, equations, substitutions, inference rules, etc.,
are to be taken modulo ACU, i.e., as representatives of their congruence
classes. The symbol >~ will always denote an ACU-compatible ordering that
has the multiset property and is total on ground ACU-congruence classes.*

Without loss of generality we assume that the equality symbol & is the
only predicate of our language. Hence a literal is either an equation ¢t ~ ¢/
or a negated equation t % t'. The symbol =~ denotes either ~ or %. A clause
is a finite multiset of literals, usually written as a disjunction.

Let A be a ground literal nu+ >, s; & mu + Zje] tj, where u, s;, and
t; are atomic terms, n > m >0, n > 1, and u > s; and u >~ t; for all ¢ € I,
j € J. Then u is called the maximal atomic term of A, denoted by mt(A).

The ordering >, on literals compares lexicographically first the maxi-
mal atomic terms of the literals, then the polarities (negative > positive),
then the multisets of all non-zero terms occurring at the top of the liter-
als, and finally the multisets consisting of the left and right hand sides of
the literals. The ordering > on clauses is the multiset extension of the
literal ordering >.. Both > and > are noetherian and total on ground
literals/clauses.

We denote the entailment relation modulo equality and ACUKT by
FacukT. In other words, {C4,...,Cy} Facukr Cp if and only if ACUKT U
{Cy,...,Ch} E Co.

3 Cancellative Superposition

The cancellative superposition calculus (Waldmann [14]) is a refutation-
ally complete variant of the standard superposition calculus (Bachmair and
Ganzinger [2]) for sets of clauses that contain the axioms ACUK and (op-
tionally) T. It requires neither extended clauses, nor explicit inferences with
the axioms ACUKT, nor symmetrizations. Compared with standard super-
position or AC superposition calculi, the ordering restrictions of its inference
rules are strengthened: Inferences are not only limited to maximal sides of
maximal literals, but also to maximal summands thereof. As shielded vari-

“For ground terms, such an ordering can be obtained for instance from the recursive
path ordering with precedence f, = ... = fi > + > 0 and multiset status for + by
comparing normal forms w.r.t.  + 0 — = and 0 +  — z. If clauses are fully abstracted
eagerly (cf. Sect. 4), the compatibility requirement becomes void.



ables are non-maximal, this implies in particular that there are no overlaps
with such variables.

The inference system £ of the cancellative superposition calculus® con-
sists of the inference rules cancellation, equality resolution, standard superpo-
sition, cancellative superposition, abstraction, and cancellative equality fac-
toring. Ground versions of these rules are given below.

The following conditions are common to all the inference rules: Every
literal involved in some inference must be maximal in the respective premise
(except for the last but one literal in cancellative equality factoring infer-
ences). A positive literal involved in a superposition or abstraction inference
must be strictly maximal in the respective clause. In all superposition and
abstraction inferences, the left premise is smaller than the right premise. In
standard superposition and abstraction inferences, if s is a proper sum, then
t (or w, respectively) occurs in a maximal atomic subterm of s.

C'"Vmu+s~mu+s

C'V (m—-—mu+s~s

Cancellation

ifm>m'>1and u > s, u> s

C'V0#O0
Equality Resolution Taé
D'vitxt C'V st~ s

Standard Superposition -
D'v C'V st = s

if t occurs below a free function symbol in s, and
s[t] = s, t =t

D'Vnut+tt C'"V mu+s~s'

Canc. Superposition -
D'v C"V s+ xt' = xt + s’

ifm>1,n>1¢=n/ged(m,n), x =m/ged(m,n),
and u > s, u =8, u>t, u>t.

D'Vnnu+txt C'V sjw] ~ s
C'Vy#wV sy ~s

Abstraction

ifn>1, w=mu+ q occurs in s immediately below
some free function symbol, m > 1, nu + t is not a
subterm of w, and u >~ ¢, u > t', s{w] > s'.

®Tn [14], this inference system is denoted by CS-Infy>o.



C'"Vnut+tenu+t' Vmu+s~s

Canc. Eq. Factorin
1 g C'V yYt+xs' & xs+yt' Vnu+txnu+t

ifm>1n>n">0,v=n—n', Y =m/ged(m,v),
x =v/ged(m,v), and u = s, u = s', u = t, u =t

The inference system £ is sound with respect to ACUKT. In other words,
for every inference with premises C4,...,C, and conclusion Cy, we have
{C1,...,Chn} FacukT Co.

Lifting the inference rules to non-ground clauses is relatively straightfor-
ward as long as we restrict to clauses without unshielded variables. For the
inference rules equality resolution and standard superposition, we proceed as
in the standard superposition calculus (Bachmair and Ganzinger [2]). For
the inference rules cancellation, cancellative superposition, and cancellative
equality factoring, we have to take into account that, in a clause C =C"' V A,
the maximal literal A need no longer have the form mu + s =~ s’, where u
is the unique maximal atomic term. Rather, a non-ground literal such as
f(z) + 2f(y) + b % c may contain several (distinct but ACU-unifiable)
maximal atomic terms wu; with multiplicities my, where k ranges over some
finite non-empty index set K. We obtain thus A = Y, mpup + s = s,
where ),z my corresponds to m in the ground literal above. As in the
standard superposition rule, the substitution o that unifies all u; (and the
corresponding terms v; from the other premise) is applied to the conclusion.
For instance, the cancellative superposition rule has now the following form:

Cancellative Superposition

D' v A, C'v A
(D' v C'"V Ay)o

if the following conditions are satisfied:

— Ay = Y e mpup + s~ s

- Ay = Yyttt

—m=) egmi>1Ln=3 > 1

— ¢ =n/ged(m,n), x =m/ged(m,n).

— u is one of the ug or v; (k € K, 1 € L).

— o is a most general ACU-unifier of all uy and v; (k € K,l € L).
—uds,uis,ult,uit.

— Ay = Ys+ xt' = xt+ s’

The lifted versions of the rules cancellation and cancellative equality fac-
toring are obtained analogously. The only inference rule for which lifting is



not so straightforward is the abstraction rule. Here we have to take into ac-
count that the term to be abstracted out may be a sum containing variables
at the top [14].

In the presence of unshielded variables, it is still possible to devise (more
complicated) lifted inference rules that produce only finitely many conclu-
sions for a given tuple of premises. We do not repeat these rules here, as the
additional theory axioms DivInvNt make it possible to eliminate unshielded
variables completely. The elimination of unshielded variables happens in two
stages. First we show that every clause is logically equivalent to a clause
without unshielded variables. Then this elimination algorithm has to be in-
tegrated into the cancellative superposition calculus. Our main tool for the
second step is the concept of redundancy.

Let Cy, C4,...,Cy be clauses and let 8 be a substitution such that C;0
is ground for all ¢ € {1,... ,k}. If there are inferences
Cy ... C4
Co
and
Cio ... C10

then the latter is called a ground instance of the former.

Let N be a set of clauses, let N be the set of ground instances of clauses
in N. An inference is called ACUKT-redundant with respect to N if for
each of its ground instances with conclusion Cpf and maximal premise C6
we have { D € N | D <¢c C0} EacukT Co8.5 A clause C is called ACUKT-
redundant with respect to N, if for every ground instance C6, {D € N |
D <. 09} ):ACUKT Co.

A set N of clauses is called saturated with respect to an inference system
and a redundancy criterion, if every inference from clauses in NV is redundant
with respect to N.

THEOREM 3.1 The inference system R is refutationally complete with re-
spect to ACUKT, that is, a R-saturated set of clauses is unsatisfiable modulo
ACUKT if and only if it contains the empty clause (Waldmann [14]).

One application of the redundancy concept is simplification: A prover
produces a saturated set of clauses by computing inferences according to
some fair strategy and adding the conclusions of non-redundant inferences
to the current set of clauses. At any time of the saturation process, the
prover is permitted to replace a clause by an equivalent set of new clauses,
provided the new clauses make the simplified clause redundant. As we will
see later, in the calculus for DTAGs, redundancy is already essential to prove
the refutational completeness of the inference rules themselves.

For abstraction inferences one has to consider all ground instances Cofp of Cof =y 3
wh V Cyfly] with yp < wé.



4 Variable Elimination: The Logical Side

It is well-known that the theory of DTAGs allows quantifier elimination:
For every quantified formula over 0, 4+, and = there exists an equivalent
quantifier-free formula. In the presence of free function symbols, there is of
course no way to eliminate all variables from a clause, but we can at least
give an effective method to eliminate all unshielded variables.

Let z be a variable. We define a binary relation —, over clauses by

CancelVar C'V mz+sc~m'z+s —, C'V (m—mz+s~s

ifm>m'>1.

ElimNeg C'Vmr+sgs —, C'

if m > 1 and z does not occur in C', s, s'.

ElimPos C’\/mlx-l—sl%s'l\/...\/mk:r:-l-sk%S;c —5 C'

if m; > 1 and z does not occur in C’, s;, s}, for 1 <i < k.

Coalesce C'Vmr+s#s Vnr+txt
=z C'Vmr+s#s Vt+yxs ~yYt' + s

ifm>1,n>1 v =m/ged(m,n), x = n/ged(m,n), and z
does not occur at the top of s,s’ t,t'.

The relation —, is noetherian. Let the binary relation — 5, over clauses
be defined in such a way that Cy —eim C1 if and only if Cy contains an
unshielded variable z and C7 is a normal form of C with respect to —.
Then —ejim is again noetherian. For any clause C, let elim(C') denote some
(arbitrary but fixed) normal form of C' with respect to the relation —gjiy, .

LEMMA 4.1 For every clause C, elim(C') contains no unshielded variables.

LEMMA 4.2 For every clause C, {C} U DivIinvNt EacukT elim(C) and
{elim(C)} EacuxT C. For every ground instance C6, {elim(C)0} EacukT
Co.

Using the technique sketched so far, every clause Cy can be transformed
into a clause elim(Cp) that does not contain unshielded variables, follows
from Cy and the divisible torsion-free abelian group axioms, and implies
Cop modulo ACUKT. Obviously, we can perform this transformation for all
initially given clauses before we start the saturation process. However, the
set of clauses without unshielded variables is not closed under the inference
system R, i.e., inferences from clauses without unshielded variables may
produce clauses with unshielded variables. To eliminate these clauses during
the saturation process, it is not sufficient that they follow logically from some
other clauses: redundancy requires that they follow from some sufficiently



small clauses. Unfortunately, under certain circumstances the transformed
clause elim(Cp) may not be small enough. Hence, to integrate the variable
elimination algorithm into the cancellative superposition calculus, it has to
be supplemented by a case analysis technique.

5 Variable Elimination: The Operational Side

Let ¢ be an inference. We call the unifying substitution o that is computed
during ¢ and applied to the conclusion the pivotal substitution of ¢. (For
abstraction inferences and all ground inferences, the pivotal substitution is
the identity mapping.) If A is the last literal of the last premise of ¢, we call
Ao the pivotal literal of ¢. Finally, if ug is the atomic term that is cancelled
out in ¢, or in which some subterm is replaced or abstracted out,” then we call
ugo the pivotal term of ¢. Pivotal terms have two important properties: First,
whenever an inference ¢ from clauses without unshielded variables produces
a conclusion with unshielded variables, then all these unshielded variables
occur in the pivotal term of ¢. Second, no atomic term in the conclusion of
¢ can be larger than the pivotal term of .

A clause C is called fully abstracted, if no non-variable term occurs
below a free function symbol in C. Every clause C' can be transformed into
an equivalent fully abstracted clause abs(C') by iterated rewriting

Clf(..ovt, )] — z#tVCOUf(..,z,...)],

where « is a new variable and ¢ is a non-variable term occurring immediately
below the free function symbol f in C. It should be noted that the variable
elimination algorithm preserves full abstraction, so that for every clause C,
elim(abs(C)) is a logically equivalent clause that is fully abstracted and does
not contain unshielded variables.

In the sequel we assume that every clause C in the input of the inference
system is replaced by elim(abs(C')) before we start the saturation process.
The inference system D2 that we will describe now preserves both prop-
erties: the set of all fully abstracted clauses without unshielded variables is
closed under D2, The system D% is given by two meta-inference rules:

Eliminating Inference

Cn, ... (1
elim(C'g)

if the following condition is satisfied:

"More precisely, uo is the maximal atomic subterm of s containing ¢ (or w) in standard
superposition or abstraction inferences, and the term u in all other inferences.



C, ... Cy . . »
- "?1 is a non-abstraction and non-standard superposition K-
0

inference.®

Instantiating Inference

Cn ... (4
Cot

if the following conditions are satisfied:

C, ... Cp . . .
- "Tl is a non-abstraction and non-standard superposition K-
0

inference with pivotal literal A and pivotal term w.

The multiset difference elim(Cyp) \ Cp contains a literal A; with the
same polarity as A.

— An atomic term wuq occurs at the top of A;.

— 7 is contained in a minimal complete set of ACU-unifiers of u and u;.

The redundancy of ®®5-inferences is defined in a slightly complicated
way. Essentially, a ©®S-inference is redundant if sufficiently many ground
instances of the RK-inference on which it is based are redundant. For our
purposes, it is sufficient to know that any inference is redundant with respect
to a set NV of clauses as soon as its conclusion (or a simplified version thereof)
is present in V.

THEOREM 5.1 If a set of fully abstracted clauses is saturated with respect
to ©%% and none of the clauses contains unshielded variables, then it is
also saturated with respect to &, and it is unsatisfiable modulo ACUKT U
DivInvNt if and only if it contains the empty clause (Waldmann [14, 16]).

If all clauses are fully abstracted, then the terms that have to be com-
pared during the saturation have the property that they do not contain the
operator 4. In this situation, the requirement that the ordering > has to
be ACU-compatible becomes void, and we may use an arbitrary reduction
ordering over terms not containing + that is total on ground terms and
for which 0 is minimal. As every ordering of this kind can be extended to
an ordering that is ACU-compatible and has the multiset property (Wald-
mann [15]), the completeness proof is still justified.

8In the one-sorted case considered in this paper, standard superposition inferences from
fully abstracted clauses are impossible. In the general many-sorted case, standard super-
position inferences must not be ignored.



6 Deciding the Theory of DTAGs

A refutationally complete calculus derives a contradiction (and terminates)
whenever the set of input formulae is inconsistent. To show that a refuta-
tionally complete calculus is actually a decision procedure, one has to prove
that it terminates even on consistent inputs. Following this general scheme,
we will now demonstrate that the calculus ©% is a decision procedure for
the theory of divisible torsion-free abelian groups.

Let us denote by D the class of all closed first-order formulae with arbi-
trary quantifiers and logical connectives and containing not more than the
function symbols + (binary), 0 (constant), — (unary), div-by; (unary) for
k € N”° and the binary predicate symbol ~. Given a formula F € D, our
task is to decide whether F' is equivalent to true or to false with respect to
the theory of divisible torsion-free abelian groups. As the theory of DTAGs
is complete, every formula in D is equivalent either to true or to false, hence
F is equivalent to true if and only if it is satisfiable.

We can first of all eliminate the symbols — and div-by; from F by re-
cursively replacing any atom s[—t] &~ s’ by Vz(—=z +t = 0 V s[z] = §)
and any atom s[div-byy(t)] = s’ by Va(—kz = t V s[z] = s'), where z is
a new variable. The resulting formula Fj is then converted into a formula
F5 in prenex normal form. By skolemization, F5 can be further translated
into a formula F3 without existentially quantified variables, such that Fj3
is satisfiable if and only if F' is satisfiable. Skolemization replaces the ex-
istentially quantified variables of F5 by terms fj(z1,...,2;), where the z;
are universally quantified variables and f; is a new free function symbol.
Finally, the formula F3 can be transformed into conjunctive normal form,
which we represent as a finite set of clauses. This set of clauses is a subset
of the class D, defined as follows: A clause C' is contained in D, if and only
if there exists a finite sequence of distinct variables 1, ..., z, such that, for
every literal s ~ s’ in C, both s and s’ are sums ) nytg, and each t; is
either a variable z; or an atomic term f(zy,...,z;) for some i < n. The
class of all clauses C' in D, without unshielded variables is denoted by D™,
We claim that there is a strategy for D 2*-superposition that is guaranteed
to terminate on every finite subset of Dcelim. Termination implies that with
this strategy ®%**-superposition becomes a decision procedure for the satis-
fiability of finite subsets of D™ (and hence of formulae in D) with respect
to ACUKT U DivInvNt.

In the rest of this paper, we assume > to be a lexicographic path or-
dering based on a precedence relation that respects the arity of function
symbols (greater arity implying higher precedence). Apart from satisfying
this restriction, the precedence can be arbitrary (but has to be total). With-
out loss of generality, we assume that the function symbols occurring in the
input clauses are fp, > --- > fi. We note that fj(z1,...,27) > fe(z1,...,2;)
if and only if f; > f; if and only if j > k.

10



In the one-sorted case, the inference system ©®* consists of the elimi-
nating and the instantiating variants of the rules cancellation, equality reso-
lution, cancellative superposition, and cancellative equality factoring. We will
show that for the special class of clauses D™ instantiating inferences are
not needed:

LEMMA 6.1 Every D%-inference from clauses in D™ js an eliminating
inference.

PROOF. Assume that there is an instantiating © **-inference

C, ... C1
Cor

with premises in D™, Then

c, ... G
Co

is a R-inference with pivotal literal A, pivotal term u, and pivotal substitu-
tion 0. Furthermore, the multiset difference elim(Cj) \ Cy contains a literal
Ay with the same polarity as A, and uT = uy7 for some atomic term uy oc-
curring at the top of 4. As elim(Cy) # Cy, the clause Cyp must contain some
unshielded variable x, and since the premises have no unshielded variables,
x must occur in the pivotal term u. Now, as the premises C; are clauses in
DEim | there exists a fixed list of variables x1,z2,... such that all atomic
terms in Cjo, and thus in Cy and elim(Cy), have the form f;(z1,..., ;) for
some j and /. Consequently, any two atomic terms in Cjo, Cy, and elim(C))
are either equal or not unifiable. By assumption, u and u; have the unifier
7, hence u = uy. So z occurs in uy, and thus in an atomic term in elim(Cj),
and thus in an atomic term in Cy. Hence z is shielded in Cj, which refutes
our assumption. O

For a clause C, let sfact(C) be the clause obtained from C by syntactic
factoring, that is, by replacing every repeated literal A V ... V A by A. Let
scanc(C) be the clause obtained from C' by syntactic cancellation, that is,
by replacing every literal s + ¢ ~ s’ + ¢t with non-zero ¢ by s ~ s'.

Unlike syntactic factoring, syntactic cancellation may introduce un-
shielded variables (if the term that was cancelled out was the last term
shielding some variable). During elimination of these unshielded variables,
the Coalesce rule may again produce syntactically equal terms on both sides
of a literal. Let the binary relation —ce over clauses be defined in such a
way that Cy —gce C1 if and only if C7 = elim(scanc(C)) and C; # Cp. It
is easy to show that —¢.e terminates. Let us denote the normal form of a
clause C with respect to —sce by scanc™(C), and let simp(C) be the clause
sfact(scanc™(C)).

11



LEMMA 6.2 For every clause C in D™ replacing C by simp(C) is a sim-
plification.”

In descriptions of resolution or paramodulation style inference systems,
one assumes conventionally that all clauses are variable disjoint, so that
overlapping terms or literals can always be unified in the inference rules. To
simplify the termination proof, we will exploit the fact that the particular
structure of Dg“m allows us to use quite the opposite approach: Consider a,
Dbs_inference from two clauses Cy and Cj in Dcelim. During this inference,
the maximal atomic term of Cs, say fr(zY,...,2}), and the maximal atomic
term of Cy, say fi(},...,z}), are overlapped. By definition of the ordering
and of the class D™ the set of variables of C is exactly {z},...,2}}, and
all atomic terms in Cy have the form f;(z},..., ;) with j <k and ! <i (and
analogously for Cs). Therefore, essentially the same inference is also possible,
if we assume that all clauses share the same variables x1, 2o, ..., and all non-
variable terms occurring in the clause set have the form f;(zq,...,2;) for
some j and [. The pivotal substitution can then always be assumed to be
the identity mapping, and it is trivial to check that the conclusion of any
D5 inference uses again the variables x1, zs, ... in the required way.

To saturate a given finite subset of the class D™ we use the following
strategy:

Let N be the set of all input clauses.
Let fm, > -+ > f1 be the function symbols occurring in N.
Let Ny, = {sfact(C)| C € N }.
For k =m,m—1,...,1:
If Njf 1 is defined, let N, ,8 be the set obtained from N;* 1 by replacing
every clause C' whose maximal function symbol is fj by simp(C).
For r =0,1,...:
If N is defined and if there are non-redundant cancellative su-
perposition or cancellative equality factoring © %**-inferences from
clauses in N; with pivotal term fi(21,...,2;), pick one of them
“don’t care” non-deterministically, let C' be its conclusion, and let
N[ = N7 U {sfact(C)};
if N; is defined and if there is no such inference, let IV ,:‘ = N;.
If N is defined, let N* be the union of N;* and the set of all con-
clusions of all non-redundant equality resolution ®%*-inferences from
clauses in Nj".

LEMMA 6.3 Let k € {1,...,m}. If Nj',, is defined, then there exists an
r € N such that there is no non-redundant cancellative superposition or
cancellative equality factoring ©*-inference from clauses in N, + with pivotal
term fr(z1,...,x;).

9The restriction to clauses in D™ is crucial for the correctness of this lemma.
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PROOF. Every ®%.inference is redundant with respect to Ny if its con-
clusion C or an equivalent smaller clause, such as sfact(C), is contained in
Nj,. All inclusions in the sequence N,? C N,% C .-+ C Ny C... must there-
fore be strict. A clause can participate in an inference with pivotal term
fr(x1,...,2;) only if it contains f; and if it does not contain any f; with
j > k, or in other words, if fx(z1,...,2;) is its maximal atomic term. The
set of all such clauses in N,g is obviously finite. We will show below that
the number of such clauses in [ J, N/ is finitely bounded. From these finitely
many clauses only finitely many conclusions of inferences can be derived,
hence | J, N must be finite. As the inclusions in the sequence are strict, the
sequence is finite.

It remains to be proved that the number of clauses with maximal atomic
term fx(z1,...,2;) in |J, N} is finitely bounded. Let M be the subset of N
containing all clauses with maximal atomic term fi(x1,...,2;). Let L be
the set of all literals of clauses in M, let Ly be the set of all literals in L in
which fi occurs, and let Ly = L\ L;. Note that there is no literal in L; in
which fi occurs on both sides. Let Ly be the set of all literals A, such that
there is a cancellative superposition K-inference

As Ay
A

with literals A; and Ay from L;. Let Ly be the set of all literals A, such
that there is a cancellative equality factoring R-inference

A V Ay
AV Ay

with literals A; and As from L;. Note that f; does not occur in literals
from L{ U Ly. Let M™ be the set of all clauses consisting of literals in
LoU Li U Ly U Ly (without duplicated literals).

Consider an arbitrary eliminating cancellative superposition or cancella-
tive equality factoring ®%-inference

Cn ... Oy
elim(C'g)
from premises in M* with pivotal term fi(z1,...,z;) and conclusion D =
elim(Cy). If fr(xy1,...,2;) occurs in sfact(D), then it occurs also in Cp. In
this case, all variables in Cy are shielded, thus elim(Cy) = Cjy. Since
Cp ... O
Co

is a cancellative superposition or cancellative equality factoring K-inference,
sfact(D) = sfact(Cp) is again contained in M*. As M C M*, we can con-
clude that all clauses in | J, Nj, with maximal atomic term fj(z1,...,z;) are
contained in M™*. Since M™* is finite, this completes the proof. a

13



COROLLARY 6.4 N} and N* are defined for every k € {1,...,m + 1}.

COROLLARY 6.5 N+ N} FNOENLELENEELOENYENLE LR
N  N* is a finite theorem proving derivation; N and N* are equivalent
modulo ACUKT U DivInvNt.

LEMMA 6.6 Let 1 <k < j <m. Then all Ds_inferences with pivotal term
fi(z1,..., @) from clauses in N, are redundant with respect to N.

PROOF. By induction, we may assume that all ®%-inferences with pivotal
term fp(z1,...,27), p > k from clauses in NI:<+1 are redundant with respect
to N ;.

The clauses in N,:‘ \ N,:‘ 1 contain only function symbols f, with p <
k. Therefore, every ®%s-inference from clauses in N,:‘ with pivotal term
fp(z1,...,2;) and p > k is an inference from clauses in N, ,:‘ 11, hence it is
redundant with respect to N;* 1~ As all clauses in NV, Iy L\ Y, » are redundant
with respect to N, 41, every inference that is redundant with respect to
N,:‘ 1 1s also redundant with respect to N,:‘ . Therefore it suffices to show
that all ©%-inferences with pivotal term fy(z1, ..., ;) from clauses in N
are redundant with respect to N}

It is easy to check that literals with f; occurring on both sides can-
not occur at all in clauses in N,:‘ \ N,?, and that they can occur in a
clause C in N ,8 only if some f, with p > k occurs in C. Hence there are
no cancellation inferences with pivotal term fi(z1,...,z;) from clauses in
N = NP U (N \ NP). This means that all inferences from clauses in N;*
with pivotal term fi(z1,...,x;) are either cancellative superposition or can-
cellative equality factoring inferences, hence they are redundant with respect
to N,:‘ by construction of N:. |

THEOREM 6.7 All inferences from clauses in N* are redundant with respect
to N*.

PROOF. By the previous lemma, all ®®S-inferences with pivotal terms
fi(z1,...,2;) from clauses in N;* are redundant with respect to N;* (and
hence with respect to N*). Furthermore, by construction of N*, all equal-
ity resolution inferences from clauses in N;* are redundant with respect to
N*. Since equality resolution applies only to clauses with maximal literals
0 % 0 and since no clause in N;* contains repeated literals, no inferences are
possible from clauses in N* \ N;*. O

As N* is saturated, it contains the empty clause if and only if it is
unsatisfiable modulo ACUKT U DivInvNt. Since N and N* are equivalent
modulo the theory axioms, the main theorem of the this paper is proved:

THEOREM 6.8 A finite set N C D™ js unsatisfiable modulo ACUKT U
DivInvNt if and only if the saturation strategy derives the empty clause
from N.
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7 Conclusions

In previous work, we have demonstrated that the cancellative superposition
calculus R can be augmented by a variable elimination algorithm for DTAGs.
The resulting calculus D% is refutationally complete with respect to the
axioms of divisible torsion-free abelian groups and allows us to dispense with
variable overlaps altogether. As variable overlaps are one of the most prolific
types of inferences in resolution or superposition style calculi, integration of
the variable elimination algorithm leads to a dramatically reduced search
space compared with the usual cancellative superposition calculus or, even
worse, AC or ACU superposition calculi.

Since 1976 several resolution or superposition calculi have been shown to
be decision procedures for certain classes of formulae (e.g., [3, 5, 7]). If the
calculi in question are known to be refutationally complete, then showing
that they are actually decision procedures amounts to proving that they ter-
minate even on consistent inputs. In the present paper we have demonstrated
that the calculus ©* is powerful enough to solve the decision problem for
divisible torsion-free abelian groups. Following the general scheme described
above, the termination proof is peculiar in two respects: First, we require
that the set of clauses is saturated in a stratified way. Termination follows
from the two facts that the number of strata is finite and that the number
of new clauses derived during each stratum is finite. Second, the particular
structure of the literals and clauses makes it possible to assume that all
clauses share the same variables and that the pivotal substitution is always
the identity mapping — in some sense, variables are treated as if they were
constants.

What remains open at present is the precise computational complexity of
our decision procedure. The time bound that can be derived in a straight-
forward manner from the saturation strategy is non-elementary. Possibly
significantly better bounds can be obtained for subclasses of Dglim, but this
is still a matter of further research.
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