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Abstract

For autonomous agents to successfully operate in the real world, anticipation of
future events and states of their environment is a key competence. This problem can
be formalized as a sequence prediction problem, where a number of observations
are used to predict the sequence into the future. However, real-world scenarios
demand a model of uncertainty of such predictions, as future states become in-
creasingly uncertain and multi-modal – in particular on long time horizons. This
makes modelling and learning challenging. We cast state of the art semantic seg-
mentation and future prediction models based on deep learning into a Bayesian
formulation that in turn allows for a full Bayesian treatment of the prediction
problem. We present a new sampling scheme for this model that draws from the
success of variational autoencoders by incorporating a recognition network. In
the experiments we show that our model outperforms prior work in accuracy of
the predicted segmentation and provides calibrated probabilities that also better
capture the multi-modal aspects of possible future states of street scenes.

1 Introduction

Anticipation of the movement of dynamic agents e.g. pedestrians and vehicles is key to preventing
accidents in inner city environments. Recently there has been considerable interest in this direction
of research. A particularly interesting direction is the prediction of future scene parsing or semantic
segmentation. Prediction of future scene segmentation does not suffer from blurriness problems
associated with RGB frame prediction and captures more details than prediction of object trajectories.
Therefore, prediction in this mode of scene representation warrants further investigation.

Figure 1: Importance sampling from the
model distribution

The recent works like [15, 11] have achieved good per-
formance for this task. However, these works do not sys-
tematically consider the inherent uncertainty in the future
states of traffic scenes. Assumption of a deterministic
model of the future could lead to situations where high
confidence predictions of the model deviate considerably
from the groundtruth, especially for important classes like
pedestrians.

In this work, we take a Bayesian approach. Bayesian
learning provides a theoretically well founded approach
to capture both model and observation uncertainty [8].
In particular, to tackle model uncertainty the distribution
of likely models is learned. Dropout based variational inference [12], which approximates the
distribution of models using dropout, has made deep Bayesian learning tractable. However during
optimization, the data log-likelihood is estimated through Monte-Carlo samples from the model
distribution. This could lead to high variance estimates especially when the data distribution is
multimodal, leading to poor model parameter updates and poor performance.
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While Conditional Variational Autoencoders (CVAE) are also suited to model uncertain futures [22],
they don’t provide a full Bayesian treatment of the problem. However, they come with a solution that
stabilizes learning: a recognition network for importance sampling of latent codes. Our approach
offers both, a full Bayesian treatment as well as improved learning by importance sampling – where
models, in contrast to latent codes, are sampled from an auxiliary recognition network (Figure 1).

In this work: 1. We develop the first Bayesian, theoretically well grounded, approach to predicting the
future of street scenes which captures both model and observation uncertainty, 2. We propose a novel
optimization scheme of such Bayesian models which employs importance sampling from the model
distribution, 3. We demonstrate state-of-the-art prediction results on the diverse Cityscapes dataset,
4. Finally, we show that the uncertainties predicted by the model are well calibrated – predicted
probability of occurrence of a class corresponds well to the observed frequency in the data.

2 Related work

Predicting future scene segmentation. In [15] the first method for predicting future scene segmen-
tations have been proposed. Their model is fully convolutional with prediction at multiple scales and
is trained adversarially. [11] improves upon this through the joint prediction of future scene segmenta-
tion and optical flow. Similar to [15] a fully convolutional model is proposed, but the proposed model
is based on the Resnet-101 [10] and has a single prediction scale. More recently, [16] has extended the
model of [15] to the related task of future instance segmentation prediction. These methods achieve
promising results and establish the competence of fully convolutional models. Similar architectures
have performed well at a variety of related tasks, including segmentation estimation [26, 27], RGB
frame prediction [18, 1] among others. While we also adopt such a model architecture, we improve
the architecture for better performance and provide a full Bayesian treatment to model uncertain
futures.

Bayesian deep learning. Most popular deep learning models do not model uncertainty. A mean
model is learned which is equivalent to assuming deterministic outcomes. Bayesian models [17, 19]
do not make such assumptions and learn the posterior distribution of likely models. However,
inference of the model posterior is difficult. In [8] this problem is tackled using variational inference.
The distribution of models is approximated using a Bernoulli distribution on the weight parameters
and the equivalence to dropout training is shown. This method is further extended to convolutional
neural networks in [7]. In [12] this method is extended to tackle both model and observation
uncertainty through heteroscedastic regression. The proposed method achieves state of the art results
on segmentation estimation and depth regression tasks. This framework is used in [3] to estimate
future pedestrian trajectories. We improve upon this dropout based learning scheme through the use
of importance sampling.

Structured output prediction. Stochastic feedforward neural networks (SFNN) and conditional
variational autoencoders (CVAE) have also shown success in modeling multimodal conditional
distributions. SFNNs are difficult to optimize on large datasets [23] due to the binary stochastic
variables. Although there has been significant effort in improving training efficiency [21, 9], success
has been partial. In contrast, CVAEs [22] assume Gaussian stochastic variables, which are easier
to optimize on large datasets using the re-parameterization trick. CVAEs have been successfully
applied on a large variety of tasks, include conditional image generation [2], next frame synthesis
[25], video generation [1, 6], trajectory prediction [14] among others. The basic CVAE framework is
improved upon in [4] through the use of a multiple-sample objective. However, there are no existing
works which use CVAE for future street scene prediction. Moreover, in comparison to Bayesian
methods, experimental evidence of uncertainty calibration is missing. This is especially important for
autonomous/assisted driving, as users need to be able to express trust in the predictions for effective
decision making. Therefore, we also adopt a Bayesian approach over SFNN or CVAE approaches.

Autonomous and assisted driving. Research into learning based autonomous control of vehicles
dates back to ALVINN [20]. Recently proposed approaches Bojarski et al. [5], Xu et al. [24] leverage
large scale data. In [11] it is shown how future scene segmentation can be leveraged for the control of
vehicles, highlighting the utility of this challenging task. In contrast to prior work, our predictions are
well calibrated – potentially enabling better control and decision making.
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3 Bayesian models for prediction under uncertainty

We phrase our models in a Bayesian framework, to jointly capture model (epistemic) and observation
(aleatoric) uncertainty (data variation) [12]. We begin with model uncertainty.

3.1 Model uncertainty

Let sp ∈ Sp be past and sf ∈ Sf be corresponding future segmentation sequences. Consider f : sp → sf,
we capture model uncertainty by learning the distribution p(f |Sp,Sf) of generative models f , likely
to have generated our data {Sp,Sf}. The complete predictive distribution of future sequences sf is
obtained by marginalizing over the posterior distribution,

p(sf|sp,Sp,Sf) =

∫
p(sf|sp, f)p(f |Sp,Sf)df . (1)

However, the integral in (1) is intractable. But, we can approximate it in two steps [8]. First, we
assume that our models can be described by a finite set of variables ω. Thus, we constrain the set of
possible models to ones that can be described with ω. Now, (1) can be equivalently written as,

p(sf|sp,Sp,Sf) =

∫
p(sf|sp, ω)p(ω|Sp,Sf)dω . (2)

Second, we assume an approximating variational distribution q(ω) of models which allows for
efficient sampling. This results in the approximate distribution,

p(sf|sp,Sp,Sf) ≈ p(sf|sp) =

∫
p(sf|sp, ω)q(ω)dω . (3)

In [7] a Bernoulli variational distribution defined over each convolutional patch was proposed
Therefore, the number possible models is exponential in the number of patches. This number
could be very large, making it difficult optimize over this very large set of models. In contrast, in
our approach (4), the number possible models is exponential in the number of weight parameters,
a much smaller number. In detail, we choose the set of convolutional kernels and the biases
{(W1, b1), . . . , (WL, bL)} ∈ W of our model as the set of variables ω. Then, we define the following
novel approximating Bernoulli variational distribution q(ω) independently over each element wi,j

k′,k

(correspondingly bk) of the kernels and the biases at spatial locations {i, j},
q(WK) = MK � ZK

zi,jk′,k = Bernoulli(pK), k′ = 1, . . . , |K ′|, k = 1, . . . , |K| .
(4)

Note, � denotes the hadamard product, Mk are tuneable variational parameters, zi,jk′,k are the indepen-
dent Bernoulli variables, pK is a probability tensor equal to the size of the (bias) layer, |K| (|K ′|) is
the number of kernels in the current (previous) layer. Here, pK is chosen manually. In our approach,
in contrast to [7], weights (kernel/bias parameters) are dropped out before convolution. Thus, the
same kernel is applied at each spatial location leading to the detection of the same features at varying
spatial locations. Next, we describe how we capture observation uncertainty.

3.2 Observation uncertainty

Observation uncertainty can be captured by assuming an appropriate distribution of observation noise
and predicting the sufficient statistics of the distribution [12]. Here, we assume a diagonal Gaussian
distribution at each pixel and predict the mean µi,j

f and variance σi,j
f of the distribution. In detail, the

predictive distribution of a generative model draw from Ŵ ∼ q(W) at a pixel position {i, j} is,

pi,j(sf|sp, Ŵ) = N
(
(µi,j

f |sp, Ŵ), (σi,j
f |sp, Ŵ)

)
. (5)

We can sample from the predictive distribution p(sf|sp) (3) by first sampling the weight matricesW
from (4) and then sampling from the Gaussian distribution in (5). We perform the last step by the
linear transformation of a zero mean unit diagonal variance Gaussian, ensuring differentiability,

ŝi,jf ∼ µ
i,j
f (sp|Ŵ) + z × σi,j

f (sp|Ŵ), where p(z) is N (0, I) and Ŵ ∼ q(W) . (6)
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Figure 2: Our full model. The recognition model is available only during training.

where, ŝi,jf is the sample drawn at a pixel position {i, j} through the liner transformation of z with
the predicted mean µi,j

f and variance σi,j
f . In practice, si,jf is a “pre-softmax” class-confidence vector.

A sample of final class probabilities is obtained by pushing ŝi,jf through a softmax.

3.3 Training

For a good variational approximation (3), our approximating variational distribution of generative
models q(ω) should be close to the true posterior p(ω|Sp,Sf). Therefore, we minimize the KL
divergence between these two distributions. As shown in [8, 7, 12] the KL divergence is given by,

KL(q(ω) || p(ω|Sp,Sf)) ∝ KL(q(ω) || p(ω))−
∫
q(ω) log p(sf|sp, ω)dω . (7)

The log-likelihood term at the right of (7) is usually estimated using Monte-Carlo sampling [8, 7, 12].
For one training example and one sample ŝf drawn a generative model sampled from q(ω) it is,

− log p(sf|sp, ω) =
∑
i,j

|si,jf − ŝi,jf |

+
∑
i,j

( ∣∣ |si,jf − si−1,jf | − |̂si,jf − ŝi−1,jf |
∣∣ +

∣∣ |si,jf − si,j−1f | − |̂si,jf − ŝi,j−1f |
∣∣ )

This form (as in [15, 11]) prevents our models p(sf|sp, ω) from always fitting to the mean of the
multimodal data distribution. However, due to the very large support of q(ω) and likely multi-modal
nature of p(sf|sp, ω)q(ω), we may need very large number of Monte-Carlo samples for an accurate
estimate. Estimation with a small number samples would lead to high variance updates of the
model parameters. However, the drawing of a large number of samples from q(ω) for every step
during training would be inefficient. We propose to mitigate this problem through the novel use of
importance sampling. During training we draw samples from a proposal distribution q̄(ω|sp, sf). We
can now rewrite the KL divergence as, (more details in Appendix),

KL(q(ω) || p(ω))−
∫
q(ω) log p(sf|sp, ω)dω.

≤KL(q(ω) || p(ω))−
∫

log
(
q(ω)p(sf|sp, ω)

)
dω.

= KL(q(ω) || p(ω))−
∫

log
( q(ω)

q̄(ω|sp, sf)
p(sf|sp, ω)q̄(ω|sp, sf)

)
dω.

≤KL(q(ω) || p(ω)) + KL(q̄(ω|sp, sf) || q(ω))−
∫

log
(
p(sf|sp, ω)q̄(ω|sp, sf)

)
dω.

(8)

We would like an appropriate importance sampling distribution q̄(ω|sp, sf), so that the distribution
p(sf|sp, ω)q̄(ω|sp, sf) leads to good estimates of the data log-likelihood with a few samples (and good
parameter updates). We propose jointly training a recognition neural network to learn q̄(ω|sp, sf).
In contrast to recognition networks in CVAE [22], our recognition network must learn to sample
model parameters ω versus Gaussian latent variables. This introduces the challenge of choosing an
appropriate form of q̄(ω|sp, sf) – learnability, efficient sampling and KL divergence computation (8)
are key requirements. We choose the following form of the distribution,

q̄(WK |sf) = MK � ŻK

żi,jk′,k = Bernoulli(ṗi,jk′,k|ss, sf), k
′ = 1, . . . , |K ′|, k = 1, . . . , |K|.

(9)
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The parameters ṗi,jk′,k are learned by our recognition network while MK are shared with (4). In other
words, our recognition network learns to adjust the probabilities ṗi,jk′,k based on the data point (sp, sf),
helping us sample the appropriate Bernoulli masks ŻK (and thus models), so that sampling from
p(sf|sp, ω)q̄(ω|sp, sf) leads good estimates of the data log-likelihood. To ensure differentiability w.r.t
ṗi,jk′,k , we approximate the Bernoulli distribution in (9) with the concrete distribution. In detail,

żi,jk′,k = sigmoid
( 1

t

(
log ṗi,jk′,k − log(1− ṗi,jk′,k) + log û− log(1− û)

))
(10)

where, û ∼ U(0, 1) and t is a temperature parameter which controls the “discreteness” of the
distribution.

As both q(ω) and q̄(ω|sp, sf) factorizes into the Bernoulli distributions of their components, the
KL divergence between them is the sum of the KL divergences of the components zi,jk′,k and żi,jk′,k.
Therefore, the KL divergence can be computed in a differentiable closed form. Next, we discuss the
architectures of our generative and recognition models.

3.4 Model architectures

Our generative and recognition model architectures are shown in Figure 2. The generative model
takes as input a sequence of past “pre-softmax” class-confidences (sp), the past and future vehicle
odometry op, of and produces the class-confidences at the next time-step as output. The additional
conditioning on vehicle odometry is because the sequences are recorded in frame of reference of a
moving vehicle and therefore the future observed sequence is dependent upon the vehicle trajectory.
We use recursion to efficiently predict a sequence of future scene segmentations sf. The recognition
model takes as input the past and future class-confidences at training time and we sample dropout
masks for the generative model using the output probabilities.

Our generative model architecture consists of a fully convolutional encoder-decoder pair. This
architecture builds upon prior work [15, 11], however with key differences. In [15], each of the two
levels of the model architecture consists of only five convolutional layers. In contrast, our model
consists of one level with five convolutaional blocks. The encoder contains three residual blocks
with max-pooling in between and the decoder consists of a residual and a convoluational block with
up-sampling in between. We double the size of the blocks following max-pooling in order to preserve
resolution. This leads to a much deeper model with fifteen convolutional layers, with constant spatial
convolutional kernel sizes. This deep model with pooling creates a wide receptive field and helps
better capture spatio-temporal dependencies. The residual connections help in the optimization of
such a deep model. Computational resources allowing, it is possible to add more levels to our model.
In [11] a model is considered which uses a Res101-FCN as an encoder. Although this model has
significantly more layers, it also introduces a large amount of pooling. This leads to loss of resolution
and spatial information, hence degrading performance.

Our recognition model consists of an encoder with seven convolutional layers with max-pooling,
creating a large receptive field. The final layer in the encoder is a 3D tensor whose spatial size
equals the spatial size of the convolutional kernels in the generative model. The decoder consists of
convolutional layers in parallel all connected to the encoder, corresponding to each convolutional
kernel in the generative model. The final output shape of these decoder layers equals that of the
corresponding convolutional kernel in the generative model. The outputs are transformed into
probabilities (in [0,1]) through a sigmoid non-linearity. (More details in Appendix)

4 Experiments

We evaluate our models against various state of the art approaches on short and long-term prediction
and perform ablation studies of the different aspects of the model. In order to make our results
comparable to prior work, we follow established datasets and evaluation metrics: We measure both
the pixel accuracy and the calibration of the uncertainty associated with the predictions. In line with
[15, 11], we evaluate on the large Cityscapes dataset. We train all models using Adam [13] for 50
epochs with batch size 8. We always use the annotated 20th frame of the validation sequences for
evaluation. We use one sample to train the Bayesian methods as in [7] and use 100 samples during
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Table 1: Comparison to the state-of-the-art.
Timestep

Method +0.06sec +0.18sec +0.54sec

Last Input ([15]) x 49.4 36.9
Luc et al. [15] (ft) x 59.4 47.8
Last Input ([11]) 59.7 x x
Jin et al. [11] 66.1 x x
Last Input (Ours) 64.0 52.1 38.3
Bayes-S (mean) 71.5 64.8 45.7
Bayes-WD (mean) 71.0 63.5 44.0
Bayes-WD-IS (mean) 71.7 65.0 47.0
Bayes-WD-IS (ft, mean) x x 51.8

Table 2: Comparison of seg-
mentation estimation methods on
Cityscapes validation set.

Method mIoU

Dilation10 [15] 68.8
Res101-FCN [11] 75.2
PSPNet (Ours) 77.2

Table 3: Detailed medium-term evaluation (mIoU estimated using
oracle top 5%).

Timestep

t + 5 t + 10

Method mIoU CLL CLLp mIoU CLL CLLp

Last Input 45.7 0.86 6.17 37.1 1.35 7.69
ResG-Mean 59.1 0.49 4.89 46.6 0.89 6.92
Bayes-S 58.8 0.48 4.14 46.1 0.80 5.28
Bayes-WD 59.2 0.48 3.82 46.6 0.79 4.70
Bayes-WD-IS 60.3 0.47 3.81 48.0 0.78 4.56

Table 4: Ablation study and com-
parison to a CVAE baseline.

Timestep

t + 5 t + 10

Method CLL CLL

Bayes-S (First) 0.54 1.09
Bayes-S (Mid) 0.50 0.86
Bayes-S (Last) 0.49 0.85
ResG-CVAE 0.50 0.87
Bayes-S 0.48 0.79

evaluation. We use PSPNet [27] to segment the full training sequences as only the 20th frame has
groundtruth annotations. All experiments were performed on a Nvidia P40 GPU with 24GB memory.

Evaluation metrics and baselines. We use the mean Intersection-over-Union (IoU) and the per-
pixel (negative) conditional log-likelihood (CLL) metrics. The mIoU metric, the standard metric to
evaluate semantic segmentation, considers whether the most likely predicted class is correct. The
CLL metric considers the match between the predicted and true distributions. In comparison to mIoU
it particularly penalizes cases of confident but wrong predictions. Thus, the CLL metric is effective
in judging whether the variation in the data is captured. We consider the following baselines and
ablation studies for comparison to our Resnet based Bayesian (Bayes-WD-IS) model with weight
dropout and trained using importance sampling: 1. Copying the last seen input; 2. A non-Bayesian
(ResG-Mean) version; 3. A Bayesian version with standard patch dropout (Bayes-S); 4. A Bayesian
version with our weight dropout (Bayes-WD) (additional baselines wherever necessary). We use grid
search to set the dropout rate (in (4)) to 0.15 for the Bayes-S and 0.20 for Bayes-WD(-IS) models.

Comparison to state of the art. We begin by comparing our Bayesian models to state-of-the-art
methods [15, 11] in Table 1. We use the mean IoU metric and for a fair comparison consider the mean
(of all samples) prediction of our Bayesian models. Always the comparison is to the groundtruth
segmentations of the validation set. However, as all three methods use a slightly different semantic
segmentation algorithm (Table 2) to generate training and input test data, we include the mean IoU
achieved by the Last Input of all three methods. Similar to [15] we fine-tune (ft) our model to predict
at 3 frame intervals for better medium/long-term performance. Our Bayes-WD-IS model outperforms
baselines and improves on prior work by 5.6 mIoU at +0.06sec of [11] and 5.6 mIoU / 4.0 mIoU at
+0.18sec/+0.54sec respectively [15]. The relative improvement over the corresponding Last Input
baseline is also larger for our Bayes-WD-IS model. These results validate our choice of model
architecture and show that our novel Bayesian approach clearly outperform the state-of-the-art.

Evaluation of predicted diversity. Next, we evaluate the diversity of the predictions of our Bayesian
models. We compare our Bayesian models against the ResG-Mean model, which makes a single
point prediction. We compare the mean IoU of the models up to t + 10 frames (0.6 seconds) in
Table 3. The future of street scenes already display considerable uncertainty at this time-horizon.
We consider the mean of (oracle) best 5% of predictions (similar to [14]) of our Bayesian models
for comparison in order to evaluate the diversity of the predicted posterior. We see that the best
predictions considerably improve over the mean predictions – showing that our Bayesian models learn
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Figure 3: Uncertainty Calibration at t + 10.

Table 5: Long-term evaluation.
Timestep

+1sec +5sec +10sec

Method CLL CLL CLL

Uniform 2.94 2.94 2.94
Last Input 1.68 3.24 4.14
RegG-Mean 1.18 2.65 3.04
Bayes-WD-IS 1.04 2.31 2.82

to make diverse predictions. Furthermore, the improvement increases at t + 10 with increasing data
variation. Quantitatively, we see that the Bayes-S model performs worst, demonstrating that standard
dropout with MC sampling during training struggles to fit to the multi-modal data distribution. The
use of weight dropout improves the performance to the level of the ResG-Mean model. Finally, we
see that our Bayes-WD-IS model performs best. In fact, it is the only Bayesian model whose (best)
performance exceeds that of the ResG-Mean model, demonstrating the effectiveness of importance
sampling during training. We show qualitative examples in Figure 4 at t + 9 (as in [15]). We compare
the best prediction of our Bayes-WD-IS model with that of ResG-Mean. The last row highlights
the differences between the predictions – cyan shows areas where our Bayes-WD-IS is correct and
ResG-Mean is wrong, red shows the opposite. We see that our Bayes-WD-IS performs better at
classes like cars and pedestrians which are harder to predict (also in comparison to Figure 5 in [15]).

Evaluation of predicted uncertainty. Next, we evaluate the ability of the models to capture data
variation using the CLL metric. We consider the mean predictive distribution (3) and in Table 3 we
show the CLL up to t + 10 frames. We see that the Bayesian models outperform the ResG-Mean model
significantly. In particular, we see that our Bayes-WD-IS model performs the best, demonstrating
better fit to the multimodal data distribution. Some important classes e.g. pedestrians display higher
multimodality. We perform an CLL analysis of the pedestrian class (CLLp) in Table 3 (qualitative
examples in Figure 5). Again, we see that our Bayes-WD-IS model performs the best confirming
better fit to the data distribution and the effectiveness of training using importance sampling.

Medium term uncertainty calibration. We further evaluate the uncertainty of the predictive distri-
butions by measuring their calibration – the correspondence between the predicted probability of a
class and the frequency of its occurrence in the data. As in [12], we discretize the output probabilities
of the mean predicted distribution into bins and measure the frequency of correct predictions for each
bin. We report the results at t + 10 frames in Table 3. We observe that all Bayesian approaches outper-
form the ResG-Mean version. This again demonstrates the effectiveness of the Bayesian approaches
in capturing uncertainty. The results also further demonstrate the effectiveness of weight dropout
over standard dropout. Finally, our ResG-Bayes-WD-IS performs significantly better, demonstrating
the better fit to the multimodal data distribution achieved using importance sampling during training.

Long term prediction performace. Next, we evaluate our models to predict up to 10 seconds into
the future. This is very challenging as the future at such a large time horizon is highly uncertain. We
use the CLL metric and show the results in Table 5. We consider an additional Uniform baseline
which predicts equal probability of each class at each pixel position. As in [15], we fine-tune our
ResG-Mean and Bayes-WD-IS to predict at 3 frame intervals and for evaluation we feed it input
frames 1 second apart. The “Last Input“ baseline performs very poorly as it cannot capture data
variation – at many pixels it assigns close to zero probability to the correct class. We see our
Bayes-WD-IS performs the best demonstrating it’s ability to capture data variation even at such large
time horizons. It’s performance advantage over the Uniform baseline even at t + 10 shows that the
predicted distribution contains potentially usable information.

Comparison to a CVAE baseline. As there exists no CVAE [22] based model for future segmen-
tation prediction, we construct a baseline as close as possible to our Bayesian models based on
existing CVAE based models for related tasks [1, 25]. Existing CVAE based models [1, 25] contain
a few intermediate layers with Gaussian input noise. This is in contrast to Bayesian models which
have weight uncertainty at every layer. Therefore, for a fair comparison we first conduct an ablation
study in Table 4 to find the layers which are most effective at capturing data variation. We consider
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Groundtruth, t + 9 ResG-Mean, t + 9 Bayes-WD-IS, t + 9 Comparison

Figure 4: Bayes-WD-IS (top 1) vs ResG-Mean. Cyan: Bayes-WD-IS is correct and ResG-Mean is wrong. Red:
Bayes-WD-IS is wrong and ResG-Mean is correct, white: both right, black: both wrong/unlabeled.

ResG-Mean, t + 9 Bayes-S, t + 9 Bayes-WD, t + 9 Bayes-WD-IS, t + 9

Figure 5: Evaluating distribution of pedestrians. Green: Predicted, Red: Groundtruth, Yellow: Correct overlap.

ablations of Bayes-S where dropout is used only in the first, middle or last convolutional block. We
observe that dropout in the last layers can better capture data variation. This is because the last layers
capture semantically higher level scene features. Overall, the full Bayesian approach (ResG-Bayes-S)
performs the best. This shows the necessity of weight uncertainty at each layer to match data variation.
Finally, we compare to a CVAE baseline (ResG-CVAE) which observes Gaussian noise at the last
convolutional block. The Gaussian noise is input dependent during training – it is sampled from a
recognition network (similar to Figure 2 see Appendix). The poor performance of the ResG-CVAE
model shows that it is not able to effectively leverage Gaussian noise to match the data variation.

5 Conclusion

We propose a novel approach for predicting real-world semantic segmentations into the future
that casts a convolutional deep learning approach into a Bayesian formulation. One of the key
contributions is a novel importance sampling scheme that draws from ideas of Conditional Variational
Autoencoders. Our proposed method shows state of the art performance in challenging street scenes.
More importantly, we show that the probabilistic output of our deep learning architecture captures
uncertainty and multi-modality inherent to this task. We believe that the developed methodology goes
beyond just the demonstrated task and creates new opportunities to marry high performance deep
learning architectures with principled formulations of Bayesian inference.
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Appendix A. Additional derivations.

KL divergence estimate. We provide a complete derivation of the importance sampling based KL
divergence estimate – (8) in the main article. Starting from (7) in the main article, we have,

KL(q(ω) || p(ω))−
∫
q(ω) log p(sf|sp, ω)dω.

≤KL(q(ω) || p(ω))−
∫

log
(
q(ω)p(sf|sp, ω)

)
dω.

(S1)

This follows from the inequality ai log(bi) ≥ log(aibi), where ai, bi ∈ [0, 1] (as bai
i ≥ bi). Then by

dividing and multiplying by q̄(ω|sp, sf),

KL(q(ω) || p(ω))−
∫

log
( q(ω)

q̄(ω|sp, sf)
p(sf|sp, ω)q̄(ω|sp, sf)

)
dω.

= KL(q(ω) || p(ω))−
∫

log
( q(ω)

q̄(ω|sp, sf)

)
dω −

∫
log
(
p(sf|sp, ω)q̄(ω|sp, sf)

)
dω.

(S2)

Then we multiply each element of the first integral with q̄(ω|sp, sf). As q̄(ω|sp, sf) ∈ [0, 1], we have,

KL(q(ω) || p(ω))−
∫

log
( q(ω)

q̄(ω|sp, sf)

)
dω −

∫
log
(
p(sf|sp, ω)q̄(ω|sp, sf)

)
dω.

≤KL(q(ω) || p(ω))−
∫
q̄(ω|sp, sf) log

( q(ω)

q̄(ω|sp, sf)

)
dω −

∫
log
(
p(sf|sp, ω)q̄(ω|sp, sf)

)
dω.

(S3)

This first integral equals the KL divergence KL(q̄(ω|sp, sf) || q(ω)), giving the final approximation,

KL(q(ω) || p(ω)) + KL(q̄(ω|sp, sf) || q(ω))−
∫

log
(
p(sf|sp, ω)q̄(ω|sp, sf)

)
dω. (S4)

Appendix B. Additional results.

Evaluation the effectiveness of observation uncertainty. Here we compare our Bayes-WD-IS
model to a version which models only model (epistemic) uncertainty (all other details constant) –
Epis-WD-IS. We use the CLL metric and show the results in Table 6. We see that both model and
observation uncertainty is necessary to capture the full variation in the data.

Timestep

t + 5 t + 10

Method CLL CLL

Epis-WD-IS 0.48 0.80
Bayes-WD-IS 0.47 0.78

Table 6: Evaluating the effectiveness of observation uncertainty in our model.

Additional visual examples. In Figure 6 we show random samples and the per-pixel entropy of the
predictive distribution of our Bayes-WD-IS model. We see that our Bayes-WD-IS model can capture
the uncertainty in the data. For example, on the left-most set of examples we see that our Bayes-WD-
IS model captures the range of possible locations of the person on the bike, similarly in the right-most
example our Bayes-WD-IS model captures the range of possible locations of the car. Furthermore,
we see that pixels with high entropy correspond to uncertain locations of pedestrians/vehicle.
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Groundtruth, t + 9

Random Sample #1, t + 9

Random Sample #2, t + 9

Random Sample #3, t + 9

Random Sample #4, t + 9

Entropy, t + 9

Figure 6: Random samples from our Bayes-WD-IS model along with the per-pixel entropy of the predictive
distribution.

Appendix C. Additional architecture details.

Details of our generative model. We show the layer wise details in Table 7.

Details of our recognition model. We show the layer wise details in Table 8.

Details of the recognition model used in the ResG-CVAE baseline. We show the layer wise details
in Table 9.
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Layer Type Size Activation Input Output

In1 Input sp Conv1,1
Conv1,1 Conv2D 128 ReLU In1 Conv1,2
Conv1,2 Conv2D 128 ReLU Conv1,1 Conv1,3
Conv1,3 Conv2D 128 ReLU Conv1,2 ResConc1

ResConc1 Residual Connection 128 {Conv1,1,Conv1,3} MaxPool1
MaxPool1 Max Pooling 2×2 ResConc1 Conv2,1
Conv2,1 Conv2D 256 ReLU MaxPool1 Conv2,2
Conv2,2 Conv2D 256 ReLU Conv2,1 Conv2,3
Conv2,3 Conv2D 256 ReLU Conv2,2 ResConc2

ResConc2 Residual Connection 128 {Conv1,3,Conv2,3} MaxPool2
MaxPool2 Max Pooling 2×2 ResConc1 Conv3,1
Conv3,1 Conv2D 512 ReLU MaxPool2 Conv3,2
Conv3,2 Conv2D 512 ReLU Conv3,1 Conv3,3
Conv3,3 Conv2D 512 ReLU Conv3,2 ResConc3

ResConc3 Residual Connection 128 {Conv2,3,Conv3,3} UpSamp1
UpSamp1 Up Sampling 2×2 ResConc3 Conv4,1
Conv4,1 Conv2D 256 ReLU UpSamp1 Conv4,2
Conv4,2 Conv2D 256 ReLU Conv4,1 Conv4,3
Conv4,3 Conv2D 256 ReLU Conv4,2 ResConc4

ResConc4 Residual Connection 128 {Conv3,3,Conv4,3} UpSamp2
UpSamp2 Up Sampling 2×2 ResConc3 Conv5,1
Conv5,1 Conv2D 128 ReLU UpSamp2 Conv5,2
Conv5,2 Conv2D 64 ReLU Conv5,1 Conv5,3
Conv5,3 Conv2D 64 ReLU Conv5,2 Conv5,3
Conv6 Conv2D 38 Conv5,3 GaussS
GaussS Gaussian Sampling Conv6 sf

Table 7: Details our generative model. The final output of Conv6 is split into mean and variances for sampling
as in (6) of the main paper.
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Layer Type Size Activation Input Output

In1 Input sp, sf Conv1,1
Conv1,1 Conv2D 128 ReLU In1 Conv1,2
Conv1,2 Conv2D 128 ReLU Conv1,1 MaxPool1

MaxPool1 Max Pooling 2×2 Conv1,2 Conv2,1
Conv2,1 Conv2D 128 ReLU MaxPool1 Conv2,2
Conv2,2 Conv2D 128 ReLU Conv2,1 MaxPool2

MaxPool2 Max Pooling 2×2 Conv2,2 Conv3,1

Conv3,1 Conv2D 128 ReLU MaxPool2 MaxPool2
MaxPool3 Max Pooling 2×2 Conv3,1 Conv4,1
Conv4,1 Conv2D 128 ReLU MaxPool3 MaxPool4

MaxPool4 Max Pooling 2×2 Conv4,1 Conv5,1
Conv5,1 Conv2D 128 ReLU MaxPool4 MaxPool5

MaxPool5 Max Pooling 2×2 Conv3,2 Conv4,1
Flatten MaxPool5 Dense1
Dense Fully Connected 288 ReLU Flatten Reshape

Reshape Reshape (3,3,32) Dense {Conv6,1, . . . ,Conv6,15}
Conv6,1 Conv2D - Reshape ṗ1

. . . . .
Conv6,15 Conv2D - Reshape ṗ15

Table 8: Details our recognition model. The final outputs of ṗ1, . . . , ṗ15 are used to sample the weight matrices
ŴK ∼ q̄(WK |sp, sf).

Layer Type Size Activation Input Output

In1 Input sp, sf Conv1,1

Conv1,1 Conv2D 128 ReLU In1 Conv1,2

Conv1,2 Conv2D 128 ReLU Conv1,1 MaxPool1
MaxPool1 Max Pooling 2×2 Conv1,2 Conv2,1

Conv2,1 Conv2D 128 ReLU MaxPool1 Conv2,2

Conv2,2 Conv2D 128 ReLU Conv2,1 MaxPool2
MaxPool2 Max Pooling 2×2 Conv2,2 Conv3,1

Conv3,1 Conv2D 128 ReLU MaxPool2 Conv4,1

Conv4,1 Conv2D 128 ReLU Conv3,1 UpSamp1
UpSamp1 Up Sampling 2×2 Conv4,1 Conv5,1

Conv5,1 Conv2D 128 ReLU UpSamp1 UpSamp2
UpSamp2 Up Sampling 2×2 Conv3,2 Conv4,1

Conv6,1 Conv2D 32 UpSamp2 z1
Conv6,2 Conv2D 32 UpSamp2 z2
Conv6,3 Conv2D 32 UpSamp2 z3

Table 9: Details the recognition model used in the ResG-CVAE baseline. The final outputs are the Gaussian
Noise tensors z1, z2, z3.
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