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Abstract

Standard superposition is not a decision procedure for first-order finite-
domain problems. One reason are inferences with the explicit finite-domain
clause r >~ 1V...Vx =~ n; others are unbounded inferences from transitivity-
like clauses, or literals with non-linear variable occurrences. Exploiting a
refined lifting argument, we present a more restrictive superposition calculus
that actually constitutes a decision procedure for finite-domain problems. In
addition we demonstrate that, in a framework with a sort discipline based on
general monadic predicates, the benefits of this calculus can be transferred
to finite-domain sorts that occur together with potentially infinite sorts.
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1 Introduction

Standard superposition is not a decision procedure for first-order finite-
domain problems. For example, the superposition calculus need not ter-
minate on a given clause set N even if all function symbols are constants
and hence any Herbrand model of N has a finite domain. This is because
simplifications like rewriting or subsumption do not exploit finiteness. Even
worse, clauses such as

r~1V...Vx>~n

which restrict the domain to at most n digits, are the source of a highly
prolific infinite search space if they are not handled with special care.
In this paper we exploit the finiteness of the domain in order to obtain a

refined lifting lemma. The resulting superposition calculus for finite domains

(a) restricts the range of inference unifiers to digits and variables,

(b) facilitates the precise calculation of ordering restrictions,

(c) introduces an effective general semantic redundancy notion, and

(d) incorporates a particular splitting rule for non-Horn clauses,
all shown in Sect. 4. The properties (a)—(c) are a consequence of showing that
for completeness only ground substitutions to digits need to be considered
(Proposition 4.1, Lemma 5.1). Therefore, via the lifting lemma, no complex
unifiers need to be considered. The number of ground instances of a clause is
finite and hence ordering restrictions can be precisely calculated even for non-
ground clauses and the general semantic redundancy notion that any clause
semantically entailed by smaller clauses can be deleted becomes decidable.

But all these refinements do not guarantee termination of the calculus.

This can even be shown by a simple ground problem. For example, consider
the two equations f(a) ~ a, a ~ f(b) ordered by an LPO with precedence
a = f = b [NRO1]. These equations generate infinitely many clauses of the
form fi(b) ~ a by superposition right inferences. By exhaustive rewriting
termination can be enforced for this example, but it is not known whether re-
dundancy criteria guarantee termination outside the Horn fragment. There-
fore, we introduce a splitting rule that splits non-Horn clauses into clauses



with fewer positive literals (d). Eventually, the calculus is guaranteed to
terminate for finite domains (Theorem 4.24).
The resulting superposition calculus for finite domains
(e) constitutes a decision procedure (Theorem 4.24),
(f) is mostly compatible with the redundancy notion of standard superpo-
sition (Section4.3), and
(g) can be embedded via monadic predicates (sorts) in general first-order
settings with potentially infinite domains (Section 5).
As a consequence of (e), our calculus decides the Bernays-Schonfinkel class
(Corollary 4.25). We thereby solve a further classical decidability problem by
superposition.

Compared to instantiation-based methods for finite-domain problems say
as in [McC03, CS03], superposition for finite domains does not a priori in-
stantiate variables, but exploits the finite-domain structure on the level of
non-ground clauses. In particular, this offers advantages if the problem has
structure that can be employed by inferences and simplifications. A first sim-
ple example are the two unit clauses P(z1, ..., 2k, z1), 7 P(a,y1, ..., Yp_1,0)
where no superposition (resolution) inference is possible but instantiation-
based methods will generate more than n* clauses for a finite domain of n
digits. In general, a (blocked) superposition inference or simplification that
involves variables simulates up to exponentially many ground steps. Like-
wise, proving one inference redundant may save an exponential amount of
work. Secondly, consider an equation f(x) ~ x and an atom P(f(g(x)))
where a standard rewriting step yields P(g(x)). After instantiation with dig-
its this reduction is no longer possible (as any term g(...) is not a digit). For
examples of this form, inferring and simplifying at the non-ground level has
the potential for exponentially shorter proofs and representations of models,
compared to instantiation-based methods.

Transformation-based methods [MB88, BS06] translate a given clause set
into a form on which standard inference mechanisms like hyperresolution
search for a model in a bottom-up way. This work is orthogonal to ours since
it transforms the problem whereas we exploit the finiteness of the domain
truely at the calculus level.

Our calculus can be combined with general first-order theories (Section 5),
which is currently supported neither by the instantiation-based nor by the
transformation-based approach. In fact, finite-domain sorts are an inher-
ent part of many verification problems that arise from software or system
analysis. Therefore, this combination has a large application potential.



2 Getting Started

For most logical notions and notations, we refer to [NRO1]. In particular we
work in a logic with built-in equality. We stipulate a single-sorted signature
Y. that contains the constant symbols 1 through n, which we name digits,
besides arbitrary other function symbols. Furthermore a set ¥  provides
infinite supply of variables. A literal s > ¢ is either an equation s ~ ¢ or a
disequation s % t. A clause is a disjunction of literals; a Horn clause is a
clause with at most one positive literal. Syntactic identity of terms, literals
and clauses is denoted by =, where for simplicity of notation the symbols ~
and 2 are supposed to be symmetric, and the order of literals in a clause is
considered irrelevant. For a term ¢ we denote by var(t) the set of variables
that occur in t; the set var(C') is defined correspondingly for every clause C'.
If o is a substitution, then dom o is the set of all variables for which xo # x
holds, ran o is the image of dom ¢ under o, and cdom o is the set of variables
occuring in rano.

Semantic entailment is defined in the usual way. We write that a -
algebra A validates a clause C' by A = C. A contains a valuation for
variables and its homomorphic extension to functions. By A[x/d]| we denote
an interpretation that is identical to A except that its valuation maps x to
the domain element d.

The theory 7 is given by the formula

Ve.z~1V...Vz>~n

We will introduce a superposition-based calculus to tackle the 7-satisfiability
of clause sets over ¥. Note that this also covers the case that the domain size
is exactly n if the input clause set contains equations ¢ 2 j for any distinct
i,j € [1;n].

The calculus will be described by rule patterns of three different types
in a fraction-like notation. Clauses occurring in the numerator are generally
called premises, and in the denominator conclusions. As usually, premises are
assumed to be variable-disjoint. Finite clause sequences Cfi,..., ), where

4



m > 0 are abbreviated as C. If C' denotes a clause and M a clause set, then
M, C' is shorthand notation for M U {C'}.

C
(i) Inference rules: 77— if condition

D

denotes any transition from a clause set M ,5 to M, 5,D provided
condition is fulfilled. Occasionally the rightmost of the premises is
named main premise, and the remaining ones are the side premises.

C

(ii) Reduction rules: R— N if condition

stands for any transition from a clause set M,C, N to a clause set
M, 5, N whenever condition holds. In essence, the clause C' is replaced
by the clauses ﬁ, the sequence of which may be empty.

. C
(iii) Split rules: ) DD
describes any transition from a clause set M, C' to the pair of clause sets
(M,C,D | M,C,D’) constrained by condition. Note that the premise
is part of each of the descending clause sets.

if condition

In the condition part of inference rules, frequently some terms, say s and t,
are required to have a most general unifier o; we stipulate that o satisfies
domo Ucdomo C var(s,t). Furthermore, occurrences of terms or of literals
may be restricted to maximal ones. In the former case this maximality
shall refer to the enclosing literal, and in the latter to the enclosing clause.
Maximality means that no other occurrence is greater, and is strict if none
is greater or equal. Correspondingly we will speak of greatest occurrences,
which are greater than or equal to the remaining ones, and of strictly greater
ones, that are greater than all the rest. There is no difference between being
greatest or maximal in case the underlying ordering is total, as it happens in
the case of ground clauses and a reduction ordering total on ground terms.
A derivation from a (not necessarily finite) clause set M with respect to a
calculus specified that way is a finitely branching tree such that (i) the nodes
are sets of clauses, (ii) the root is M, and (iii) if a node N has the immediate
descendants Ny,..., N, respectively, then there is a transition from N to
Ni, ..., N in the calculus. If N and N; are known and the transition is via
an inference or a split, then we occasionally write C + D to indicate the
premises C from N and the conclusion D which is added to N;. A complete
path N1, N, ...in a derivation tree starts from the root, ends in a leaf in case
the path is finite, and has the limit Noo = |J;(;5; &N;. Given a redundancy
notion for inferences and clauses, a derivation is said to be fair if for every
complete path Ny, N, ... the following applies to the transitions from N.:
(i) Every inference is redundant in some N;, and (ii) for every split, one of



its conclusion is in some N; or redundant with respect to it. A clause set M
is saturated if it satisfies conditions (i) and (ii) with N; replaced by M.



3 Ground Horn Superposition

We recapitulate a superposition calculus G for ground Horn clauses [BG94,
NRO1]. In every clause with negative literals, at least one of them shall be
selected. This eager selection leads to a positive unit literal strategy [Der91],
where the side premise of superposition inferences is always a positive unit
clause. Even more, the model construction involves such unit clauses only,
which later will ease the model extraction in Sect.4.4. From now on, let
> denote a reduction ordering total on ground terms. In order to lift > to
literals, these are first mapped onto term multisets according to s ~ ¢ +—
{s, t} and s 2%t — {s, s, t, t}, and then compared in the multiset extension
of »>. Furthermore clauses are compared as multisets of their respective
literals, and finally finite clause sets as multisets of clauses.

Rules of calculus G:
Ground superposition left

l~r sll]#¢tvC - [ and s are strictly greatest

7 if

slr] £tvC - s %t is selected
Ground superposition right
7 l~r sll]~t T [ and s are strictly greatest
slr] ~t cl~r<s~t

Ground equality resolution
CVttt

A
C

if - t 2t is selected

An inference with maximal premise C' and conclusion D is redundant with
respect to a clause set M if M=¢ = D, where M=¢ contains all elements
of M smaller than C. The calculus G is sound and refutationally complete
in the sense that M |= L and L € M coincide for every saturated set



M. The completeness proof relies on a model functor that associates with
M a convergent ground rewrite system R. Let R* denote the quotient of
the free ground term algebra modulo the congruence generated by R; and
assume that M is saturated and does not contain the empty clause. Then
R* is a model of M. In detail, for every clause C' let Gen(C) = {l — r} if
(i) C =1 ~re M, (ii) { is strictly maximal, (iii) [ is Re-irreducible; and
let Gen(C) = {} otherwise. Furthermore R¢ is |J,_ Gen(D), and finally
R is |Jp Gen(D). Notably R* is the unique minimal Herbrand model of M
[BGO1]. For ground terms [ and r over ¥ we have M El~riff R* =l ~r
iff lR .

Notably every inference conclusion makes the corresponding main premise
redundant and hence can be turned into a simplification. This way the
calculus decides satisfiability of finite ground Horn clause sets, which via
splitting extends to the non-Horn case. Therefore it is an attractive basis for
techniques to reason modulo 7.



4 A Calculus for
T-unsatisfiability

4.1 Calculus rules

We now introduce a calculus C that shall detect unsatisfiability modulo 7.
It works on finite or infinite sets of arbitrary clauses, ground or non-ground.
For a substitution 7 we say that it numbers if ranT C [1;n|, and that it
in addition minimally numbers with respect to a set of conditions if these
are satisfied with 7, but with no other numbering 7/ more general than 7.
Furthermore 7 ground numbers a clause C' if 7 numbers and C'7 is ground.
The set of all ground instances of C' under such substitutions is denoted by
Q(C), and its elements are called the Q-instances of C.

A distinguishing feature of the calculus C shows up if more than one
literal is maximal in a premise under the unifier: Then we instantiate just
as much as is necessary with elements of [1;n] to dissolve this ambiguity. So
more conclusions are generated, but altogether they have fewer ()-instances.
In this sense, lifting is more precise than without instantiation.

As a second specialty, if a most general unifier is involved in an inference
rule, then its range consists only of variables and digits. Hence many of the
inferences in the standard calculus are not necessary here. For example, with
the lexicographic path ordering [KL80] to the precedence + > s, from the
two clauses (z +y) + 2z ~ z + (y + 2) and u + s(v) =~ s(v + u) one would
normally obtain every s'(z +y) + z ~ x + (s'(y) + 2). But since y needs to
be bound to s(v), no inference is drawn here.

Similar to the calculus G, in every Horn clause with negative literals at
least one of them shall be selected. Non-Horn clauses are subject to splitting.
Different from the usual splitting rule, if a non-Horn clause cannot be split
into two variable-disjoint parts, then we will split some instances instead. In
order to minimize the number of splits, we assume that for every non-Horn



clause a partitioning into two subclauses is designated where each subclause
has strictly less positive literals, hence at least one. Furthermore we stipulate
that from now on the smallest ground terms are the digits from [1;n], say
such that n > ... > 1.

Rules of calculus C:

Superposition left
- "¢ ¥ and 0 = mgu(l, ")
- rano C ¥ U [1;n]

T l=r s[l]£tvVC T minimally numbers such that
(s[r] £tV C)or [ and s are strictly greatest under o7
- 5 %t is selected
- C'is Horn

Superposition right
- 1"¢ ¥ and 0 = mgu(l, )
- rano C ¥ U [1;n]
if - 7 minimally numbers such that
[ and s are strictly greatest under o7
and (I ~r)or < (s ~t)oT

Equality resolution

- o =mgu(t,t)
IC\/tﬁt' if~rana§”l/u[1;n]
Co -t £t is selected
- C'is Horn
Split
COVs~iVi~eryD - the partitioning is designated

— — if . 7 minimally numbers such that
(CVs=t)r|[(I=rvD)r the conclusions share no variables
Regarding the two superposition rules, if for two given premises the num-
ber of substitutions 7 that satisfy the side conditions is large, one could
alternatively add only a single conclusion (s[r] %2 ¢tV C)o or (s[r] ~ t)o,
respectively, which would not affect refutational completeness. The decision
procedure that will be developed later relies on the former version, however.
We consider a clause C' redundant with respect to a set M of clauses if
Q(M)=¢? |= Cp holds for every ground numbering p; that is, if every Q-
instance of C follows from smaller clauses in (M) already. By compactness
and by finiteness of Q(C'), no more than a finite subset of M is necessary.
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Sitmplification, in its general form, is making a clause redundant by adding
(zero or more) entailed smaller clauses. Here it is already enough if these
conditions hold on the Q-instances.

Simplification
C - (' is redundant w.r.t. 5, M
R?M if - Q(C, M) E= ANQUD)

. Q(C) = Q(D)

An inference with premises c , most general unifier o, minimally number-
ing substitution 7 (identity in case of equality resolution), and conclusion D
is redundant with respect to a set M of clauses if for every ground numbering
p we have Q(M)=max{C¢emr} |= Dp  In the standard superposition calculus,
the notions of redundancy and simplification refer to all ground instances,
not with respect to (2-instances only. We will show in Sect. 4.3 that the actual
difference between the notions is small.

Derivations from an unaugmented clause set M do not necessarily produce
the empty clause. For example, if n = 2, then there exist exactly four unary
functions: a negation-like, two constant ones, and the identity. Each of these
satisfies f3 = f. Hence f3(c) 2 f(c) is T-unsatisfiable although no calculus
rule is applicable to this disequation. We will therefore consider derivations
from M U7’ where 7' consists of the following clauses:

f(@)~1Vv...Vf(@)~n for any f € ¥\ [1;n]

7T’ is weaker than 7 in the sense that the upper cardinality bound is only
applied to function values, but satisfies the same universal formulae. There is
an increase in the initial number of clauses, but this is outshined by the fact
that no inferences with complex unifiers are necessary. Interestingly, within
the Bernays-Schonfinkel class the set 77 is empty, as we will demonstrate in
Sect. 4.6.

4.2 Soundness and refutational completeness

The first proposition relates 7 -satisfiability with satisfiability of (2-instances
and justifies the exchange of 7" for 7, since all Q-instances of 7 are tautolo-
gies.

Proposition 4.1 A clause set M is 7T-satisfiable iff Q(M U7") is satisfiable.

11



Proof: On the one hand, since M,7 = Q(M UT'), every 7T-model of M
is a model of Q(M U T’) as well. On the other hand, consider any model
A of Q(M UT"). Tts restriction to {14,...,n"} is a Y-algebra because of
the range restriction on the functions, and it is a 7-model by construction.
Finally every clause C' is 7-equivalent to A Q(C). O

Next one has to show that within a derivation, satisfiability is inherited
from each parent node to one of its immediate descendants.

Proposition 4.2 Let N denote a node in a derivation, with successors
Ny, ..., Np. If Q(N) is satisfiable, so is some 2(N;).

Proof: According to the type of calculus step, we distinguish three cases.

e An inference: Here k equals 1, and Ny is N U{C} where C' is N-valid.
Hence N and N; are even equivalent.

e A simplification adhering to the form R%N ’» Again k is 1, but N has
a presentation N = {C'} U N’ U N” such that N; = {D} U N U N".
The side conditions imply Q(N’) = (A Q(C)) « (A Q(D)), such that
the clause sets Q(N) and Q(N;) are equivalent.

e A split: In our concrete split rule k equals 2. Let C' = (C'Vs ~ t)1 and
D" = (I ~ r Vv D)7 denote the first and the second conclusion, respec-
tively. Then C’V D’ is N-valid, and the disjuncts share no variables.
If A is an N-model, then A satisfies at least one of C' and D', and
therefore at least one of Ny = NU{C'} and N, = NU{D'}.

O

Accordingly, the clause set at the root is 7 -satisfiable iff the derivation
has a path each element of which is satisfiable.

Proposition 4.3 For every clause set M, the following are equivalent:
(i) M is T-satisfiable.
(ii) Every derivation from M U7’ contains a complete path Ny, Ny, ... such
that every Q(XV;) is satisfiable.

Proof: If M is 7-satisfiable, then by Prop.4.1 the set Q(N;) = QM UT")
is satisfiable, from which we can recursively construct a complete path as
required by Prop.4.2. The converse implication follows from Ny = M U 7T
by Prop.4.1. [

If a clause C' occurs at some point in a path, then the limit N, entails
each of its (2-instances from smaller or equal 2-instances. Furthermore satis-
fiability of N, with respect to {2-instances is the conjunction of this property
over all path elements.

12



Proposition 4.4 Consider a complete path Ny, N, ... in some derivation.

(1)

(i)
(i)

If C € N; is ground numbered by p, then Q(N,)3? = Cp holds, as
well as Q(N;)=°? |= Cp for every j > i.

Every Q(N;) is satisfiable iff Q(Ny) is.

N, 1s saturated in case the derivation is fair.

Proof:

(i)

(iii)

The proof is by induction on C'p with respect to . Let j denote co or
a natural number greater than or equal to 7. If C' € N; we are done.
Otherwise there is an index k between i and j such that C' is contained
in NV; through Ng, but not in Np,;. By definition of simplification
we have Q(D, M)=° |= Cp for appropriate D, M C N,,. Either
5, M is empty and Cp is a tautology, or there is a greatest clause D’
in Q(D, M)=°. Inductively all elements of Q(D, M)= are valid in
Q(N;)*P" and so is Cp.

Assume that every (N;) is satisfiable. By compactness Q(Ny,) is sat-
isfiable iff each of its finite subsets is. Given one such subset M, for
every {)-instance Cp within there is an index j such that C'is contained
in N, and all successors thereof. Since M is finite, these indices have
a finite maximum k. Now €(Ny) comprises M and is satisfiable by
assumption.

As to the converse implication, consider an ()-instance Cp of a clause
C € N,;. Then Q(N) entails Cp by Prop.4.4 (i). In other words, any
model of Q(N,) is a model of Q(V;).

Firstly we consider an inference with premises C from N and con-
clusion D with ground numbering substitution p. Because of fair-
ness Q(N;)<m>{Cr} = Dp holds for some i, which can be rephrased
as Cyp1,...,Crpr = Dp for clause instances Cp; from Q(N;) below
max{Cp}. By Prop.4.4(i) these clause instances are valid in Q(Nx)
below max{C)p}, and so is Dp.

Secondly we study a split from a persistent clause C' = C VvV Cy with
designated partitioning as indicated and minimally numbering substi-
tution 7. Because of fairness, one split conjunct, say C;7, is contained
in some N; or redundant with respect to it. So either C;7 is persistent,
or (7 is redundant with respect to some N; where j > ¢. In the former
case the proof is finished. In the latter we have Q(N;)~“? |= Cip for
every ground numbering p = 77/, which extends to Q(Ny)=* |= Cip

with an argument like in the preceding paragraph.
OJ

For any clause set M, let M denote its Q-instances which are Horn clauses.
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Proposition 4.5 Q(M) and M are equivalent for C-saturated clause sets
M.

Proof: We show by induction on clause instances that every non-Horn clause
Cp € Q(M) is entailed by M. Now, C has a presentation C' = C V Cy such
that the partitioning into C'; and C} is designated. Then p numbers the clause
C such that the subclauses C; and (5 are variable disjoint. More general
such substitutions 7 have to satisfy 7 C p. There exists a C-minimal such
7 because all descending C-chains are finite. Then C'F Cy7 | Cor is a valid
C-split. Because M is saturated, one split conjunct, say C'i7, is contained in
M or redundant with respect to M. In both cases we have Q(M) = Cip,

and we obtain inductively M = Cyp. Finally Cyp entails Cp. O

The crucial lifting result is the following;:

Proposition 4.6 If a clause set M is C-saturated, then M is G-saturated.

Proof: We adapt the usual lifting arguments to our calculus, inspecting
G-inferences with premises from M. If a clause D € M contains negative
literals, then let the literal selection be inherited from one arbitrary C' € M
that instantiates into D.

e Ground superposition right: Given two clauses [ ~ r and s ~ ¢t from M
with ground numbering substitution p, consider the G-inference with
premises [p ~ rp and sp[lp], =~ tp, and conclusion sp[rp|, ~ tp. The
position p is within s because the range of p consists of digits only.
This G-inference corresponds to a variable overlap if s|, =z € ¥/, and
to a non-variable overlap otherwise.

In the former case we have zp = lp, such that [p is a digit. Because
lp > rp and the digits are the smallest ground terms, the term rp must
be a digit as well. Let p’ denote the substitution identical to p except
that zp’ = rp. Then (s ~ t)p’ is contained in (M) and makes the
inference redundant.

Now we come to non-variable overlaps. Let I’ = s|,, furthermore o =
mgu(l,!") with domo C var(l,!"), and p = oo’. Because p is ground
numbering, we know that zp is a digit for every x € domo. Given
p = oo’, every xo is either a digit or a variable.

The substitution ¢’ numbers the clauses so ~ to and lo ~ ro such
that the literals lo and so are greatest under ¢, respectively, and that
(Il ~r)oo’ < (s ~t)oo’. If T is a more general such substitution, then
it satisfies dom7 C dom o’ and x7 = xo’ for every x € dom 7, which
implies 7 C ¢’. There exists a C-minimal such 7 because all descending
C-chains are finite. Summing it up: { ~r, s[l'| ~tF (s[r] ~t)oT is a

14



C-inference with premises from M, and is redundant with respect to M
because M is saturated. If ¢’ = 77/, then the inference instance under
7' is redundant with respect to Q(M).

e Ground equality resolution: Consider a Horn clause C' V t % t' € M
with ground numbering substitution p such that CpVip 2 t'pE Cpis
a G-inference. We may assume that t % t’ is selected in C'V t £ t'. As
usually, ¢ and ¢’ have a most general unifier o, which specializes into p
say via o’. We obtain cdom o C ¥ U[1; n| like for ground superposition
right. So C' Vit 2t F Co is a C-inference with premises from M; and
its redundancy carries over to that of the above instance.

e Ground superposition left: similar to ground superposition right, but
taking selectedness into account like for ground equality resolution.

O

Putting everything together, the calculus C is sound and refutationally
complete:

Lemma 4.7 For every clause set M, the following are equivalent:
(i) M is T-satisfiable.
(ii) Every fair derivation from M U7’ contains a complete path Ny, No, . ..
such that the empty clause is not in N.

Proof: We successively transform the first characterization into the second.
By Prop. 4.3 the clause set M is 7 -satisfiable iff there exists a complete path
N1, No, ... such that every Q(NV;) is satisfiable, or such that Q(N.) is, by
Prop.4.4 (ii). Because of Prop.4.4 (iii) every N, is saturated with respect
to C. Hence by Prop.4.5 the sets (N, ) and ]Tf; are equivalent, and the
latter is saturatgd\ with respect to G. Si/nge G is sound and complete, the
satisfiability of N, is equivalent to L & N, which is the same as L ¢ N.
O

Notably the minimality of the digits is indispensable for refutational com-
pleteness: Assume that > is the lexicographic path ordering to the prece-
dence n >~ ... = 1 = f > c¢. Then from the unsatisfiable clause set
{f(z) 21, 1 ~ ¢, 1 % f(c)} nothing but the clause f(c) % c is infer-
able. We have needed this minimality in the proposition on lifting to show
that variable overlaps are non-critical; and indeed the variable overlap from
1 ~ cinto f(x) ~ 1 would produce f(c) ~ 1 and eventually lead to the
empty clause.
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4.3 Redundancy in detail

In the calculus C, redundancy on the general level is defined via redundancy
of (-instances on the ground level, whereas in standard superposition one
goes back to redundancy of all ground instances. In the sequel we analyze
the resulting difference as to redundancy of clauses. Similar considerations
apply to redundancy of inferences.

Let us compare under which conditions a clause C' is redundant with
respect to a clause set M. In the calculus C we require Q(M)=? = Cp
for every ground numbering p. The condition in standard superposition is
gnd(M)=¢? k= Co for every ground substitution o, where gnd(M) denotes
the set of all ground instances of M. So for redundancy in the sense of C
fewer instances need to be shown redundant, but on the other hand there are
fewer premises for doing so. For example, f(g(1)) ~ 1 is not redundant with
respect to f(x) ~ 1, since it is not entailed from f(1) ~ 1, ..., f(n) ~ 1.
Fortunately, in C-derivations the set M with respect to which redundancy is
studied always contains the clauses of 7", possibly simplified. Therefore we
additionally have g(1) ~ 1V ...V g(1) ~ n at hand, with which f(g(1)) ~1
does become redundant.

In this subsection, we develop two results that generalize this observation.
Firstly, if every digit instance Cp is entailed from smaller ground instances
of M except some problematic ones, then C' is redundant in the sense of C.
Secondly, if every C)p follows from arbitrary smaller ground instances, but C'
is not of a particular form, then C'is also redundant. We employ these results
to adapt one concrete simplification to our calculus, namely unit rewriting.
The subsection ends with a demonstration that C should not be mixed with
the standard notion of redundancy.

4.3.1 Deducing ground instances from digit instances

In the following we will prove that a ground instance C'o of a clause C
follows from Q(C,7"), and give a criterion when this entailment is from
smaller instances. We reserve the identifier f for non-digit function symbols,
whereas ¢, 7, k denote digits and ;, j’vectors thereof. For any term ¢, let
Dig(t) denote the clause t ~ 1V ...Vt ~n.

Proposition 4.8 For every clause C' and term ¢, the following entailment
holds: C{z — 1},...,C{x — n},Dig(t) = C{z — t}

Proof: Consider a model A of the premises. Then there exists a digit @
fulfilling A | t ~ i. This identity inductively lifts to term contexts, and
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as equivalence to clause contexts. In particular A = C{z — i} implies

A= C{x — t}. O]

Proposition 4.9 Let C denote a clause with ground substitution o = {z; —
t1y. ooy Ty — ty}. Then Q(C), Dig(ty), ..., Dig(ty,) = Co holds.

Proof: The proof is by induction on m. If ¢ is the identity we are done.
Otherwise we decompose o according to 0 = {x; — t1,..., Ty — t,} U
{ZTmy1 — tmiy1} = 01 U oy Since the substitutions are ground we have
01Uoe = 01 009. Inductively we obtain Q(Coy), Dig(ty), ..., Dig(t,) = Co;.
Proposition 4.8 gives C'oy, Dig(t,,11) | Coq0s. O

Proposition 4.10 Ground terms t obey Q(7") = Dig(?).

Proof: We induct on the structure of ¢. In case t = i the clause Dig(t)
is a tautology. In case ¢t = f(f) the proposition Q(7”) |= Dig(t;) is in-
ductively true for every j. Furthermore 7' contains Dig(f(Z)). Let o =
{x1— t1,... T +— tm}, such that f(£) = f(Z)o. With Prop.4.9 we obtain

Q(Dig(£(#))), Dig(t1). ..., Dig(tn) = Dig(f(#))o O

Proposition 4.11 Q(C,7") | Co is true for every clause C' with ground
substitution o.

Proof: Assume ¢ = {z; — t1,...,2, — t,}. Then Prop.4.10 implies
Q(7') = Dig(t;) for every i, such that from Prop.4.9 finally we obtain
Q(C), Dig(t1),...,Dig(tm) = Co. O

We have seen in Prop. 4.10 that every ground term ¢ is subject to Q(7”) =
Dig(t). In the following we will exploit that usually not all of Q(7”) is needed
for this entailment. There exist subsets T" C €(7") such that T" = Dig(t)
holds. By compactness there are finite such 7" even in case the signature is
infinite. Let A(t) denote the smallest of these finite 7', with respect to the
ordering on clause sets. Let furthermore () denote the greatest clause in
A(t) U {L}, and for ground substitutions o let §(o) stand for the greatest
clause in d(rano) U {L}. Actually one can construct A(t) recursively, but
this is not necessary for our purposes.

Proposition 4.12 Entailment from 2(7”) can be restricted by the bounds
o(t) and 6(o):

(i) Every ground term t satisfies Q(7")=°® |= Dig(t).

(ii) If o is a ground substitution for C, then Q(C), Q(7")Z% = Co holds.
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Proof:
(i) By definition we have A(t) C Q(7")3%® and A(t) |= Dig(t).
(i) Let 0 = {x1 + t1,..., 2y, = t}. Then we obtain Q(77)=%) = Dig(t;)
from Prop.4.12 (i) for every i, and Q(77)=%) k= Dig(t;) by definition
of §(o). Finally we apply Prop.4.9 to C' and o.
U

Proposition 4.13 For ground terms ¢ we have §(¢) = L iff ¢ is a digit.

Proof: In case t is a digit, then Dig(¢) is a tautology and A(t) is empty.
Otherwise Dig(t) is not a tautology. O

Proposition 4.14 If ¢ is a ground term and ¢ a ground substitution, then
we can give estimates for 6(¢) and 6(o) as follows:

(i) 6(t) = Dig(u) implies ¢ = w.

(ii) 0(0) = Dig(u) entails max(rano) = u.

Proof:

(i) The proof is by induction on the term structure. If ¢ is a digit, then we
have §(t) = L by Prop.4.13, and there is nothing to show. The case
t = f() remains. Let iy,. .., i denote exactly the indices for which t;
is not a digit, and let ¢ = f(£)[21], - .- [xx]i,. So t' is obtained from
t replacing every non-digit ¢; with a fresh variable. Conversely, using
o = {1 &y, ...,z — t;, } one can instantiate ¢’ back into ¢ again.
In case £ = 0 the argument vector ¢ contains only digits. Choosing
T = {Dig(t)} implies T' C Q(7") and T |= Dig(t). Therefore we have
T = A(t) and maxT > max A(t) = J(t), hence Dig(t) = Dig(u) and
finally ¢ > u.
In case k > 0 every §(t;,) is distinct from L by Prop.4.13, and there
exists a ground term v such that Dig(v) = max;§(t;). By induction
hypothesis and the subterm property of ¢ we obtain ¢ > v. Here we
choose T = Q(Dig(t')) U Q(7")=Pe)  which satisfies T C Q(7’). By
construction T' = Dig(t;,) holds for every j. Proposition4.9 yields
Q(Dig(t")), Dig(ts, ), . - ., Dig(t;,) = Dig(t'c). Hence we may conclude
that T > A(t) and max T = Dig(u). Next we compare 7" with {Dig(¢)}.
We have Q(Dig(t")) < {Dig(¢)} by minimality of the digits, and further-
more Q(77)3Pe() < {Dig(t)} because of v < t. Hence we may conclude
that Dig(t) = max T > Dig(u) holds, such that ¢ > u is true.

(ii) Let 0 = {xy +— t1,..., 2y — t,,}. Because of §(c) # L we have (o) =
t; for some . Using Prop. 4.14 (i) we may conclude that max;t; > ¢; > u
holds.

O
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Given a clause C' with ground substitution o, we call the pair C, o prob-
lematic if xo = f(7) for some x € var(C) and Co =< Dig(f(?)). Otherwise
the pair is called unproblematic. Let furthermore denote gnd(C') the set of
all ground instances C'o for which C, ¢ is unproblematic, and let gnd extend
to clause sets in the usual way.

Here are two necessary and quite restrictive conditions for C,o to be
problematic: Firstly some variable z € var(C') may occur only in literals of
the form x ~ ¢ and = ~ y. Secondly the greatest literal of C'c must have the

form f(?) ~ j.

Proposition 4.15 Let C denote a clause with ground substitution ¢ such
that o is not numbering, and that C, o is unproblematic. Then Q(C,7")=%° =
Co holds.

Proof: We decompose o = o1 U 05 such that the range of o; contains only
digits and the range of o5 only non-digits. Since the substitutions are ground
we have ¢ = 07 o0 0y. Proposition4.12 (i) implies Q(Coy), Q(T")3%02) =
Coy109. The substitution o5 is not empty because ¢ is not numbering. Hence
we have by minimality of the digits 2(Co;) < {Coy02}. We still have to
show d(09) < Co. Let t denote the greatest term in ranoy. By Prop.4.13
the clause d(t) equals Dig(f (7)) for some term f(z). By Prop. 4.14 (ii) we have
t = f(¥). If t = f(2), then the greatest term of C'o is above the greatest of
d(o3). Otherwise we obtain C'o > Dig(f(2)) from the requirement that C, o
is unproblematic. O

4.3.2 Using ground instances in redundancy proofs

We have seen in the preceding proposition that unproblematic ground in-
stances of clauses follow from smaller digit instances of the same clause and
of 7'. Hence these ground instances can safely be used in redundancy proofs
as if they were digit instances. Alternatively we study for which clauses it
is safe to use arbitrary ground instances when showing them redundant. A
clause C' is called critical if it has an (2-instance Cp with greatest term f(?)
such that Cp < Dig(f(7)). Otherwise C' is called noncritical.

Lemma 4.16 Consider a path in a C-derivation from M U7’ to N and a
clause C'. Then C' is redundant with respect to N if one of the following
conditions holds, where p ranges over all ground numbering substitutions:
(i) gid(N)=¢? |= Cp for all p,
(i) gnd(N)=°? = Cp for all p and C' is noncritical.
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Proof:

(1)

(i)

Given an arbitrary ground numbering substitution p, there exist clauses
Dy,...,D, € N and ground substitutions oy, ..., 0, such that every
D;, 0; is unproblematic and D;o; < Cp, and that Dyoy,..., Dpo,
Cp. In order to prove Q(N)=? = Cp it suffices to show that Q(N)=* |=
D;o; holds for every ¢. If D;o; is a digit instance of D;, then we have
D;o; € Q(N)=?. Otherwise Prop. 4.15 ensures Q(D;, T7')*P = D,o;
because D;, o; is unproblematic. With Prop. 4.4 (i) we get Q(N)=Pivi =
D;0;, and therefore Q(N)=°? |= D;o;.
Similar to the proof of Lem. 4.16 (i), for every ground numbering substi-
tution p there exist clauses Dy, ..., D,, € N and ground substitutions
01,...,0m, such that always D;o; < Cp, and that Doy, ..., Dyo, =
Cp. If Cp is a tautology we are done. Otherwise we decompose ev-
ery o, = o, U oy such that the range of o} contains only digits and
the range of o} only non-digits. Proposition4.12 (ii) guarantees that
Q(Drot), AT = Dyoy. By minimality of the digits we obtain
Q(Dyoy) 2 {Dror} < {Cp}.
Next we show that d(o}) < Cp. The clause C' is not empty since oth-
erwise = L; so Cp has a greatest term s. Let ¢ denote the greatest
term of Dyoy, then we have s = ¢. If 6(0)) = L then L < Cp. Other-
wise d(o}) has the shape Dig(f(7)). Because of Prop.4.14 (ii) we have
max(ranoy) = f(7), and because of t = max(rano}) we have s = f(7)
as well. Now s > f(7) directly entails Cp > §(o}) = Dig(f(?)). Other-
wise s equals f(%), and Cp > Dig(f(7)) holds because C' is noncritical
by assumption.
Summing it up, we obtain Q(Dyoy, 7')"“? |= Dyoy and therefore as well
Q(Dy,, T")*? = Dyog. Via Prop. 4.4 (i) we conclude Q(N)=“? = Dyoy.
O

<Cp

4.3.3 Application: unit rewriting

Ordered rewriting with respect to a set of unit equations straightforwardly
extends from terms to clauses. However it is a simplification in the sense
of the calculus C only if the clause to be simplified is above the simplifying
equation instances. For example, f(3) ~ 1 —(f@)~0) 2 > 1 is a rewrite step,
but not a simplification, because the clause to be rewritten is smaller than
the one used for rewriting.

In order to meet the requirements of Lem.4.16, a further condition is
necessary. Rewriting Clso| into Clto] is called Q-admissible if one of the
following conditions applies:

20



(i) C is noncritical.

(ii) C is critical, i.e., it contains literals of the shape f(S) ~ t where ¢
and every s; is a digit or a variable, such that with a suitable ground
numbering p the term f(5)p is the greatest of C'p and Cp < Dig(f(5)p)
holds: Then rewrite steps on such f(§) with equations x ~ i or x ~ y
only take place below f.

Proposition 4.17 Given a path in a C-derivation from M U7’ to N U{C'}
and an equation s ~ ¢t € N, the following is an instance of C-simplification:

Ordered unit rewriting

< 80 = tlo
Clso] .- Cp= (s~t)op for every
R N if . e
Clto] ground numbering substitution p

- the rewrite step is 2-admissible

Proof: Let ¢’ = Cfto]. According to the definition of simplification, we
have to show that three conditions are fulfilled.
(i) C is redundant with respect to C’, N:
Consider an arbitrary ground numbering substitution p. Clearly we
have C'p, (s ~ t)op = Cp. Now Cp = C’p is valid because of the first
requirement so > to. The second requirement guarantees C'p = (s ~
t)op. Hence the following holds:

(C'p, (s = 1)ap)“ |= Cp (*)

The crucial point is that (s ~ t)op is not an Q-instance of s ~ ¢ in
general. By the third requirement, the rewrite step is 2-admissible,
such that two cases are possible:

(a) C is noncritical: Then from (*) we obtain gnd(C’, N)*¢? = Cp
because of s >~ ¢t € N. Hence C is redundant by Lem. 4.16 (ii).

(b) C is critical: The pair C’, p is unproblematic because p is num-

bering. If s ~ ¢ op is unproblematic as well, then (k) entails
gnd(C’, N)=¢ = Cp, such that Cp is redundant with respect to
C’, N by Lem.4.16 (i).
Otherwise s ~ t, op is problematic. Hence the equation s ~ ¢ has
one of the shapes x ~ y or x ~ j, and the instance (s ~ t)op can
be written as f(7) ~ j. Furthermore (s ~ t) identifies all digits,
such that we may conclude the following:

Qs = 1), fA =~ 1V..V @ =nb f@O~)  (+)

21



The clause Dig(f(Z)) is contained in 7’. By Prop.4.4 (i) we get
Q(N)=Pielf/@) = Dig(f(7)). Since the clause C is critical, it con-
tains non-digit function symbols, such that Q(s ~ t) < {Cp} is
true. Because the rewrite step is Q-admissible, either f(7) is not
the greatest term of Cp, or Cp = Dig(f(z)) holds. In the former
case we have Dig(f(7)) < Cp as well. Consequently (+) implies
Q(N)=C? |= (s ~ t)op, which with (x) leads us to Q(C’, N)=¢? |=
Cp. So Cp is redundant with respect to C’, N.
(i) Q(C, N) = AQA(C):
If p ground numbers Co, then Cp, (s ~ t)op |= C’p holds. Proposi-
tion4.11 ensures Q(s ~ ¢, 7") = (s >~ t)op, such that Q(N) = (s = t)op
is true via Prop.4.4 (i).
(ili) Q(C) = Q(C"):
Let p ground number C', and hence C” as well, such that every variable
of the domain is mapped onto n. Then C[solp and C[to]p are the
greatest clauses of Q(C) and Q(C"), respectively, and by assumption
sop > top holds.
U

4.3.4 Composing instantiation and simplification

Unit rewriting on the non-ground level can be inapplicable although it would
be possible on every Q-instance: If n = 2 and N = {f(1) ~ 2, f(2) ~
L, g(f(f(z))) ~ g(x)}, then the third equation cannot be rewritten, but its
Q-instances could be turned into the tautologies g(1) ~ g(1) or g(2) ~ ¢(2),
respectively. However, via composition of instantiation and simplification
one obtains a simplification again, which we will show in this subsection. As
to our calculus, instantiation always preserves finiteness, because it is with
respect to digits only.

If C is a clause and I' a set of numbering substitutions with dom 7 C
var(C) for every 7 € I', then we say that I' covers C' if every p that ground
numbers C' can be obtained as specialization of some 7 € T'.

Proposition 4.18 If a clause C is covered by I' such that R % N, is a

T

simplification for every 7 € I', then R U, N; is also a simplification.

¢
UT MT
Proof: Let M = |J_ M, and N = |J_N,. By definition of simplification,
every M, is finite, and so is M. We need to prove that three conditions are
satisfied:
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(i) C is redundant with respect to M, N: If p ground numbers C, then
p = 771’ for some 7 € I'. By assumption C7 is redundant with respect
to M, U N, hence Q(M., NT)<CTT/ E C77’" holds. By set inclusion we
obtain Q(M, N)=¢* = Cp.

(ii)) QC,N) = ANQ(M): By assumption we have Q(C7,N,) = AQM,)
for every 7 € I'. This extends to |J, Q(CT,N;) = A, Q(M;), from
which the condition at hand follows via J_Q(C7, N;) = Q(C, N) and
A, (M) = AU, M,).

(iii) Q(C) > Q(M): This follows from Q(CT) = Q(M,) for every 7 € I'.

O

We can apply this result to unit rewriting and obtain a derived simplifi-
cation that will be used in the formation of a decision procedure to enforce
termination.

Corollary 4.19 Consider a path in a C-derivation from M U7’ to NU{C}.
Then the following is an instance of C-simplification:

Instance rewriting
o - I covers C' o
R— N jf~foreveryT€F:R—TNisan
{D,;:T €T} . ., Dr
ordered unit rewriting step

4.3.5 Incompatibility of C with standard redundancy

The difference of our redundancy notion to the one of standard superposition
may show up in practice: Assume n = 2 and some input M which via C
eventually leads to the clauseset N = {x ~ 1, f(1) ~ 2, f(2) ~ 2, f(1) 2 1}.
Now the clause x ~ 1 has the ground instances 2 ~ 1 and f(1) ~ 1 which
make the second and the third clause redundant in the standard sense. Since
f(1) =~ 1 is not an Q-instance of z ~ 1, these clauses are not redundant in
the sense of C.

Going further, the example shows that combining C with standard redun-
dancy is problematic: If f(1) ~ 2 and f(2) ~ 2 were deleted from N, then
the rest {x ~ 1, f(1) % 1} would be C-saturated, despite the apparent unsat-
isfiability. Summing it up, refutational completeness would be lost. However,
because of Lem. 4.16 only in rare cases standard redundancy is stronger than
redundancy in the sense of C.

Notably the opposite relation can be observed as well: Let n =2, C' =
r~yV f(l)~yand N ={f(1)~1V f(1)~2, f(2) ~1V f(2) ~2, 1~
2, C} O 7'. The clause C is redundant in the sense of C because Cp is
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a tautology if xp = yp, and because otherwise Cp is subsumed by 1 ~ 2.
However C' is not redundant in the standard sense: Consider the ground
instance Co = f(1) ~ 1V f(1) ~ 1. We obtain gnd(N)~% = {1 ~ 2, 1 ~
IV f(1)~1,2~1V f(1) ~ 1}, but 1 >~ 2}~ f(1) ~ 1. One cannot hold the
exchange of 7’ for 7 responsible for this phenomenon, since it also occurs in
caseof N ={r~1ver~2 1~2 C}

4.4 Model extraction

Here we study the case that a fair derivation from M U7’ contains a complete
path Ny, Ny, ... without the empty clause. Let R denote the rewrite system
that the superposition model functor of Sect. 3 produces from N,,. Then R*
is a witness that M is 7-satisfiable:

Proposition 4.20 R* is subject to the following properties:

(i) C € N; implies R* = A\ Q(C).

(ii) For every ground term ¢ there exists some digit j such that R* =t ~ j.
(iii) R* is a 7-model of M.

Proof:

(i) From Prop.4.4 (i) we obtain Q(Ny) E A Q(C). Due to Prop.4.4 (iii)
the limit NV, is C-saturated. So by Prop. 4.5 the clause sets Q(N,,) and
N; are equivalent. Because of Prop.4.6, the set N; is G-saturated.
Finally R* is a model of N.

(ii) If ¢ is a digit itself, then we are done. Otherwise t = f(#); and induc-
tively R* = A, tx =~ i) for some digit vector 7. Because of 7/ C N;
there is a clause \/j f(&) ~ j in Ny, which has an Q-instance under the
substitution p = {Z — 2}. This Q-instance f(?) ~1V...V f(?) ~ n
holds in R* by Prop.4.20 (i); and necessarily R* satisfies one disjunct.

(ili) Firstly we show that R* satisfies Vz.\/, x >~ i. Consider an R*-assign-
ment g such that pu(x) = [t]g. Then ¢ is a ground term by construction
of R*, such that [t]g = [j]r by Prop.4.20 (ii). Secondly, given C' € M C
Ny, we get R* = A\ Q(C) from Prop.4.20 (i). Now, C' and A Q(C) are
T-equivalent, and R* is a 7-model.

O

Next we will demonstrate that standard ordered rewriting is sufficient
to extract the 7-model R*. By Prop.4.20 (ii) the carrier of R* is given by
{[1]g,- .., [n]r}, where some of the classes may coincide. Since the digits
from [1;n] are the smallest ground terms, every non-digit ground term f(t)
is R-reducible.
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In order to rephrase this reducibility in terms of N, let E,, C N, denote
the set of all persistent unit equations, and FEj the corresponding subset of
every Np. For an arbitrary set E of such equations, the ordered rewrite
relation —p is the smallest relation on terms such that ul[sc] —p ulto]
whenever s ~ t € E, so > to and (var(t) \ var(s))oc = {1}. The third
condition ensures that given say f(x) ~ f(y), the term f(n) can only be
rewritten to f(1), thus eliminating the need to search decreasing y-instances.
This restricted version of ordered rewriting with respect to E, reduces every
ground term to its R-normal form:

Proposition 4.21 On ground terms, F,-normal forms are unique and co-
incide with R-normal forms, and —z C — g holds.

Proof: Let £ = E,. To start with, we prove —rp C —p: Assume ¢ is
R-reducible say with [ — r generated from v ~ v € F instantiated via some
ground numbering p. If every variable of v occurs in u, then we have directly
t = t[l] = tlup] — g tlvp] = t[r]. Otherwise we still have to show that xp =1
for any = exclusive to v. Imagine zp > 1, and let p’ coincide with p except
that xp’ = 1. Since | — r has been generated, we know that up is R~u),-
irreducible. Because of vp = vp', the term up is R(y~y)y-irreducible as well.
But then up — vp’ would have been generated and not up — vp.

Consider now a ground rewrite step with © ~ v € E instantiated via o.
Let p denote the substitution that maps every x to zo | g. Then R* |= up ~ vp
holds because R* is a model of Q(E) C N; Because of up |r uo we obtain
R* = uo ~vo. So we have — C | on ground terms.

This extends to gp«—o—p C |grolr € <% C |[r € [|g, by the
Church-Rosser property of R. Since the relation — g is terminating by con-
struction, it is also ground confluent, such that ground normal forms are
unique.

Finally, F-irreducibility implies R-irreducibility because of —r C —p;
and the converse holds because of —g C |g. 0

4.5 Termination

The calculus C is refutationally complete. If M is 7-unsatisfiable, then in
every path of any fair derivation eventually the empty clause will show up,
even for infinite M. Since the derivation tree is finitely branching, any such
derivation is finite. If M is 7-satisfiable, however, then derivations without
suitable simplification steps may become infinite. In order to overcome this,
we will characterize a family of derivations which are guaranteed to terminate.

25



In order to make this effective, naturally the input clause set M must be
finite, and so is the signature ¥; and the ordering > must be decidable.

We have seen in the preceding section that, unless the empty clause has
been derived, every function application to digits, i.e., every f(?), is reducible
with respect to the limit F,,. The key observation now is that E. can
sufficiently be approximated finitely: Only finitely many of the persistent
equations can actually reduce the terms f(7); and these are all present from
some F, on. Given a non-ground function occurrence, each of its finitely
many (2-instances can then be simplified into a digit, which simplifies the
non-ground expression provided some ordering restriction is met. In the end,
non-digit function symbols only occur on top-level.

Formally, given a clause set N with unit equations £ C N, we say that
N reduces to digits if every term f(2) is E-reducible without considering
equations x ~ y or x ~ k on top-level. Inductively every ground term can
then be rewritten to a digit as well. Furthermore a clause is called [1;n]-
shallow if non-digit function symbols occur only at the top-level of positive
literals.

Proposition 4.22 Consider a complete path Ny, Ny, ... in a fair derivation
from M UT’, where M is finite.
(i) For some index k, all N, ; contain L; or they all reduce to digits.
(ii) If C' € Nyy; is not [1;n]-shallow, then C' can effectively be simplified
into a finite set of [1;n]-shallow clauses.

Proof:

(i) If M is T-unsatisfiable, then L is continuously present from some N,
on, by Lem.4.7. Otherwise we consider the rewrite system R that the
superposition model functor of Sect.3 produces from N.. Proposi-
tion4.20 (ii) guarantees that for every term f(7) there is a term ¢ such
that f(7) —g t holds. Because of Prop.4.21 the above rewrite step is
identically possible with respect to E.. Since the signature is finite
and —p_ is terminating, only a finite portion E of F, is needed for
reducing all the f(7). For every element s ~ ¢ of E, there is an index
ks~ such that s ~ t € E; for every i > ks;. By finiteness of F, the
maximum & of all k,~; is finite.

(ii) Let E = E..;. If N, contains |, which is [1;n]-shallow itself, then
any other clause is redundant. Otherwise we first show that every
ground clause D which is not [1;n]-shallow can be simplified via or-
dered unit rewriting as in Prop.4.17: By definition there is a presen-
tation D = D[f(5)] such that f(8) occurs (a) within a negative literal
or (b) under some function symbol g. Since N,.; reduces to digits,
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there is a reduction f(§) —pg t without using equations = ~ y or
xr =~ j on top-level, such that (2-admissibility is given. Furthermore
f(5) = t holds by construction of —pg. Additionally the clause to
be rewritten is above the equation instance used for simplification: In
case (a) we have D[f(5)] > f(8) = f(5) = f(5) ~ t, and in case (b)
there is an estimate D[f(5)] = D[g(u1, ..., up_1, f(8), uks1,-- -, Um)] =
g(ug, .. up—1, f(8), Uks1, .oy Up) = 1= f(5) ~t.

As an inductive consequence, every ground clause which is not [1;n]-
shallow can be simplified into a [1;n]-shallow clause via a sequence of
unit rewriting steps. Let now I' denote the finite set of all substitu-
tions p that ground number C' and satisfy dom p = var(C). Then for
every instance Cp there is a [1; n]-shallow clause D, into which Cp can

be rewritten. Summing it up, we obtain an instance rewriting step

R {Dicel“} N, in accordance with Cor.4.19.
p: P

0

One may want to test explicitly whether a given N, reduces to digits al-
ready (and if so, perhaps test immediately whether Ej, describes a 7-model of
M). Notably the property is not always inherited from Ny to Ny, ;. Consider
for example the following simplification steps in the sense of the calculus C:

fB)~f(1) N fB3) =1 f(1)
T~ 7(1) 141V f(3)~1 R

f2)y~1 f(1)

The term f(3) is Ej-reducible, but not necessarily Eji-reducible. As the
second example shows, this may even occur if unit equations are simplified
with respect to Ejy only. In case this is not desired, one has to restrict
the simplification of unit equations. For example, ordered unit rewriting,
instance rewriting, subsumption and tautology elimination are compatible.

Now we come to the second ingredient of our argumentation towards
termination, which will allow us to establish a bound on the number of

3

R 2

121

variables in clauses.

Proposition 4.23 Inference and split conclusions do not have more vari-
ables than one of the premises:
(i) If o = mgu(u,v) withrano C ¥ U[1;n| and dom cUcdom o C var(u, v),
then there is a variant o’ that additionally satisfies var(vo’) C var(v).
(ii) If C'F D is a unary inference or a split, then var(D) C var(C') holds.
(iii) If I ~r, C'F D is a binary inference, then |var(D)| < |var(C)| is true.
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Proof:

(1)

(i)

(i)

Let P(m) hold iff there exists an mgu o of u and v with rano C
¥ U [1;n], domo Ucdomo C var(u,v), and |var(vo) \ var(v)| = m. By
assumption P holds for some m > 0. We will now show that P(j + 1)
implies P(j).
Assume o is a witness for P(j + 1). Because of j +1 > 0 there exists
a variable y in var(vo) \ var(v). By the shape of o, this variable is the
o-image of another variable z € var(v). Consider now the substitutions
T ={x — y,y — z} and ¢’ = g o 7. The latter is a unifier of v and
v. Because of o' = o072 = 0, it is even a most general one. The
image of a variable z under ¢’ is x if z0 = y, and zo otherwise; in
particular zo’ = x and yo' = x. That is, going from o to o', the
variable x moves from the dom-part to the cdom-part, and y in the
opposite direction, which are all effects in terms of dom and cdom. The
identity var(vo’) = (var(ve) U {z}) \ {y} concludes the proof of P(j).
In case of an equality resolution step C'Vt ~ t' - C'o we have cdom o C
var(t,t’'). Given asplit CVs ~tVi~rVDF (CVs ~t)r | (I ~rVD)r,
the substitution 7 is numbering, such that cdom 7 C [1;n].
We will prove that var(D) C var(C') holds in case the most general
unifier is chosen according to Prop.4.23 (i). All mgu’s are equal up to
variable renaming; and the number of variables in a clause is invariant
under such renamings. This yields the estimate stated above.
We jointly treat superposition left and right inferences via the pattern
l~r, C[l'| F C[rlor = D. Because of l'oT = loT > roT we know that
var(l'oT) 2 var(roT) is true, and hence var(D) C var(Co7) C var(Co).
Applying Prop. 4.23 (i), without loss of generality o can be chosen such
that var(l'c) C var(l’). Let o’ denote the restriction of o to var(l’). By
this definition we have cdom o’ C var(l'c) C var(l’) C var(C'). Since
the premises are variable disjoint, we obtain var(Co) = var(Co’) C
var(C') U cdom o’ = var(C'), which completes the proof of var(D) C
var(C').

O

Simplifying a [1; n]-shallow clause with respect to other such clauses can
arbitrarily increase the number of variables and need not preserve [1;n]-
shallowness, as witnessed by

f) =2

R Zd VI Zn V. Vm v o =121

if f(1) > g(1). Clearly this counteracts our efforts towards termination; so a
strategy is needed that guides the execution of calculus steps. We say that
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a C-derivation is a C,-derivation from a clause set M if (i) it is fair, (ii) the
root node is M U7, and in every path eventually the following conditions
hold: (iii) simplifications do not increase the number of variables, (iv) [1; n]-
shallowness is preserved under simplifications, (v) inferences and splits are
not repeated, (vi) every fresh inference conclusion which is not [1; n]-shallow
is immediately simplified into a set of [1; n]-shallow clauses, (vii) no duplicate
literals occur in [1;n]-shallow clauses, and (viii) [1;n]-shallow clauses equal
up to variable renaming are identified. Indeed such derivations exist for
every finite M: The crucial item (vi) can be satisfied because of Prop.4.22.
Condition (v) does not conflict with (i) because repeated inferences and splits
are redundant.

Theorem 4.24 C,-derivations decide 7 -satisfiability of finite clause sets.

Proof: Consider a C.-derivation from a finite clause set M. Then M by
Lem. 4.7 is 7-satisfiable if and only if the derivation contains a complete
path without the empty clause in the limit. The derivation tree is finitely
branching. It remains to show that every path Ny, N,,... is finite. Let
| N;|| = max{|var(C)|:C € N;}.

There exists an index « such that from N, on, the conditions (iii) through
(vi) of the definition of C,-derivation are satisfied. We form a subsequence of
Ny, Ny, ... that starts from N| = N,. If in N; a new clause C' is inferred and,
according to condition (vi), immediately simplified into [1; n]-shallow clauses
D until Nii, then for (NJ’.)J- all sequence elements but N;,; are dropped,

and the latter shows up only if D is not empty. Assume now (N;); is infinite.
Inferences with empty D are not repeated because of condition (v), as well as
splits; so there must be infinitely many simplifications or inferences with non-
empty D. Since simplifications are decreasing with respect to (2-instances,

the latter occur infinitely many times; so (NV}); is then infinite as well.
Inductively || NJ|| < [|N{]| holds for all j: If a clause C' € N7 is simplified

to some non-empty D, then we know that |var(D;)| < |var(C)| by condition
(iii). In case of a split or an inference, we additionally apply Prop.4.23 (ii)
and Prop. 4.23 (iii).

Assume now (Nj); were infinite; then we can argue like above for (NN;);
and obtain that infinitely many inferences are drawn. The inference con-
clusions are simplified according to condition (vi), such that they become
[1; n]-shallow and have no more than ||N7|| variables. Because of conditions
(vii) and (viii), only finitely many such clauses exist. Moreover the number
of clauses that are produced from simplification and splitting alone is finite.
Therefore, eventually an inference has to be repeated, but this contradicts
condition (v). Hence (NN}); is finite, and so is (IV;);. O
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4.6 Extensions

Let us have a short look at a many-sorted setting where 7 consists of size
restrictions for every sort, each built over an individual set of digits. One has
to employ the usual typing constraints for equations, terms and substitutions.
Then the calculus C and the results obtained for it so far straightforwardly
extend to this situation.

Up to now, our calculus did not deal with predicates. Of course one could
extend C with an ordered resolution rule, and consider predicate atoms in the
superposition and split rules. Alternatively, we can introduce a two-element
sort Bool, say over the digits T and II, and provide a clause I 2 II. As usually
we can now encode predicate atoms P(f) of any other sort as equations
P(t) ~ 1. Notably 7’ need not contain an axiom P(Z) ~ IV P(Z) ~ I
Given an algebra A such that at some point P* does not map into {I4, 14},
let the algebra B coincide with A except that P?® maps all such points onto
118, Then A and B satisfy the same encoded atoms P(t) ~ 1.

As an application, consider the validity problem for a formula ¢ = V...
YV, Jy; ... y,n¢ where ¢’ is quantifier-free and contains no function symbols.
This problem was proven decidable by Bernays and Schonfinkel [BS28]. Now,
¢ is valid iff v = Vy; .. . Vy,—¢'{z1 — 1,..., 2, — n} is unsatisfiable iff ¢ is
T -unsatisfiable. Since no function symbols are present, the set 7’ is empty.
That is, derivations start from unaugmented clause sets.

Corollary 4.25 C,-derivations decide the Bernays-Schonfinkel class.
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5 Combinations with
First-Order Theories

So far, we have only considered the case where actually the overall Herbrand
domain of a formula is finite. The interesting question is whether the tech-
niques developed in the previous sections can be generalized to a setting
where the overall Herbrand domain may be infinite, but finite subsets of
the domain are specified and for these subsets we can exploit the advanced
technology. The answer we give in the section is “yes” the combination is
possible in exactly this way, i.e., for the any finite domain subset represented
by a monadic predicate we only need to consider finite instances and there
are no inferences with the axiom expressing finiteness needed.

The idea is to code the finite subsets via monadic predicates which we also
call sorts [WeiO1]. For example, the clauses S(1),S(2),S(z)Ve ~ 1Va ~ 2
force for any model A of the three clauses 1 < |S4| < 2. An atom S(#) can,
as usual, be encoded by an equation (see also Sect.4.6). If we add as a fourth
clause 1 ¢ 2 then for any model A satisfying the four clauses we get |S*| = 2.
Adding as a fourth clause 1 ~ 2 then for any model A satisfying the four
clauses we get |S*| = 1. So please recall that in contrast to many-sorted or
order-sorted logics and reasoning, in our context the semantics of a sort is
the semantics of its monadic predicate. Therefore, sorts may be empty, there
are no restrictions to the language, sorts are not a priori disjoint, elements
of sorts are not necessarily different and sorts may of course be also defined
via general clauses. Fox example, the clause = R(z, f(z)) V S(x) defines x to
be contained in the sort S if the relation R(z, f(z)) holds, and the clause
—S(x) vV =T (z) states that the sorts S and 7" are disjoint.

In general, the finite domain theory 7 under consideration for a sort S
of cardinality n is



For a clause containing a negative literal —=S(x) we say that = is of sort
S. As in the restricted case of Sect.4, instances of negative literals —S5(z)
only need to be considered with respect to [1;n]. However, if the clause
set N under consideration in addition to S(1) A ... A S(n) contains clauses
with positive literals C'V S(t) we need to consider inferences with the clause
-S(z)Vax~1V...Vx~n. This is expressed by the following proposition.

Lemma 5.1 Let N be a clause set containing the monadic predicate S. Let
M ={CVvS(t;)V...VS(t,,) € N | there is no positive literal S(¢') in C'}, M’ =
{CVt; ~1V.. .Vt 2 nV.. Vi, ~1V.. Vi, ~n | CVS(t))V...VS(t,) € M
with no positive literal S(¢') in C'} and 77 = {S(1),...,S(n)}. Furthermore,
let Qg be the restriction of €2 to variables x of sort S and N’ = ((N\M)UM’).
Then the clause set N U7 is satisfiable iff Qg¢(N') U7 is satisfiable.

Proof: “=" Let A be a model for NUT,ie, AENUT andso A =7".
For each clause C' € N we have A = C. We need to show A = C’ for
all " € Qg(N'). By construction S* = {14,... n*}. We distinguish the
following cases: (i) C' € (N \ M) and C does not contain a literal —S(z).
Then, as C = ', C € Qg(N') and we are done. (ii) let C' = =S5(x;) V
..V aS(x,) VD and C € (N \ M) where D does not contain a literal
—S(z). Assume A = C' for some C' € Qg(C) where ¢' = Co and z,0 €
{1,...,n}. Then Alz1/(z10)%, ..., 2,/(x,0)A] £ C which is a contradiction.
(iii) C e M, C = =S(x1)V...VS(z,) VSt1) V...V S(ty) VD and D
does not contain a positive occurrence of S nor a literal =5(x). Obviously
Alz/(z0)*] | —S(x) iff A | ~S(x)o. For C" = (=S(x1)V...V=S(x,) Vi =~
IV...Vti ~2nV...Vi, ~1V...Vt, ~nV D)o with C" € Qg(C) we
have Alz1/(z10)4, ... 20 /(2,0)A] E SE) if A (6 ~ 1V ...Vt ~n)o
because S* = {14,..., nA} for all i. Hence A = C".

“<” Let A = Qg(N’) and let A’ be identical to A, except that SA =
{14,...,n}. As T’ contains the only positive occurrences of S in Qg(N')UT”
and by construction A’ = 77, we also have A’ = Qg(N’). We need to show
that A’ = N and A’ = 7. Again it holds that A'[x1/(z10)% ..., 2,/ (z,0)*] =
St) iff A/ = (t; ~ 1V ...Vt; ~ n)o and A[z/(xz0)¥] E —S(x) iff
A" = =S(x)o proving A’ = N. By construction S = {14,... n*'} and
hence A" =T. O

Note that the four clauses S(1), S(2), =S(z)Ve ~ 1Vr ~ 2, f3(z) £ f(z)
are satisfiable as neither the input, nor the output of f is of sort S. Adding
the clause =S(z) vV S(f(z)) declares f to map elements from S into S and
hence causes unsatisfiability of the five clauses. For the latter clause, the
transformation of Lem. 5.1 applies.
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Now by the lifting theorem for standard superposition, we know because
of Lem.5.1 that N U7 has a superposition refutation iff N" U 7" has one.
The open question is how we can exploit the fact that we considered solely
numbering substitutions for variables of sort S. Note that although S has a
finite domain, the overall domain of N may be infinite. Therefore, we can-
not take the approach of Sect.4 where we used the numbering substitution
available for all variables to require that inferences are only performed on
strictly greatest terms and literals. Furthermore, the abstract superposition
redundancy notion is no longer effective and satisfiability is of course not de-
cidable anymore. Therefore, the idea is to restrict the range of substitutions
for variables of sort S to ¥ U [1;n], and to require that (strict) maximality
is preserved under any numbering substitution for the finite sort S. If the
digits are minimal in the ordering >, then this yields a sound and complete
refinement of the standard superposition calculus for finite sorts.

We exemplify the refinement for the superposition right inference rule.
The other inference rules are defined accordingly.

Superposition right
- "¢V and 0 = mgu(l,l')
- rano|s € ¥ U[Ll;n]
CVi~r s[l'l] ~tvD - there exists a minimally numbering 7
(CVs[rl~tV D)o of sort S such that [, [ ~r, s and
s ~ t are strictly maximal under o1
and (CVI~r)or # (s~tV D)ot

A

For the general combination of a finite sort with arbitrary formulas over
potentially infinite domains, we cannot aim at a decision procedure. There-
fore, the above rule delays instantiations of finite-sort variables as long as
possible, but applies the underlying restrictions. This is different from the
inference rules presented in Sect. 4 where variables are instantiated by finite-
domain elements in order to meet the ordering restrictions of superposition.

Theorem 5.2 Consider the notions of Lem. 5.1 and let the digits 1,...,n
be minimal in the ordering >. Then the clause set N U7 is unsatisfiable iff
there is a derivation of the empty clause from N’ U7’ by the superposition
calculus defined above.

Proof: By Lem. 5.1 NUT is unsatisfiable iff Q¢(/N')U7" is unsatisfiable. The
set Qg(N') U T’ is unsatisfiable iff there is a derivation of the empty clause
by the standard superposition calculus. As the digits are minimal in the
ordering, they might only be replaced by each other. For any clause =S(z) V
C € N’, all instances of =S(x) in the proof are generated by substitutions
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from z into [1;n]. Hence, all steps can be lifted to steps of the above refined
superposition calculus on N'. O

Here is an example for the refined maximality condition. Let > denote
the lexicographic path ordering to the precedence f > g >=n > ... > 1. Then
in the clause =S(z) V g(x,y) ~ y V f(y) >~ y, the literal g(z,y) ~ y is not
maximal, because g(z,y)T < f(y)7 for any ground numbering substitution
T.

We can even stay with the clause set N. The additional clause =S (x)Va ~
1V...Vx ~ n does not harm, i.e., the proof of Lem. 5.1 goes also through with
this extra clause. Once the clause is added by selecting —S(x) in this clause
we produce together with a clause C'V S(t) the clause CVt ~1V...Vt ~n,
i.e., it eventually generates the clauses from N’. For these steps we must
not restrict the instantiation of x in =S(z) Vo ~ 1V...Vae ~ n. Al
inferences between =S(z) Ve ~1V...Vz ~n and the facts S(1),...,5(n)
are redundant. So we could also remove the clauses M’ and stay with M,
meaning that superposition with the above restrictions is also complete for

NUT.
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6 Conclusion and Future Work

We have presented a light-weight adaptation of superposition calculi to the
first-order theory of finite domains. The achievement is a superposition cal-
culus for finite domains that
(a) restricts the range of inference unifiers to digits or variables,
(b) enables the precise calculation of ordering restrictions,
(c) introduces an effective general semantic redundancy criterion,
(d) incorporates a particular splitting rule for non-Horn clauses,
(e) constitutes a decision procedure for any finite domain problem,
(f) is mostly compatible with the all standard superposition redundancy
criteria,
and can in particular
(g) be embedded via a general sort discipline based on monadic predicates
in any general first-order setting.

We have already done some promising experiments on the basis of the
superposition calculus for finite domains [HTWO06] and a full-fledged integra-
tion into SPASS is on the way. To this end, ordering computation, inference
computation, redundancy notions will be refined for the case of variables
with a finite domain.
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