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Abstract: We consider the time dependent dynamics of an atom in a two-color pumped
cavity, longitudinally through a side mirror and transversally via direct driving of the atomic
dipole. The beating of the two driving frequencies leads to a time dependent effective
optical potential that forces the atom into a non-trivial motion, strongly resembling a discrete
random walk behavior between lattice sites. We provide both numerical and analytical
analysis of such a quasi-random walk behavior.
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1. Introduction

Over the past few decades, the optical control of motional degrees of freedom has seen great progress
both on the experimental and theoretical fronts. As a particular example of such achievement, the cavity
QED setting provides a paradigm for the observation and manipulation of motion of atoms, ions or
atomic ensembles via tailored cavity modes [1–5]. In such a system, the time delay between the action
of the field onto the atomic system’s motion via the induced optical potential and the back-action of the
particle’s position change onto the cavity field leads to effects such as cooling [6–8] or self-oscillations
(for a recent review see [9]). Addressing of the particle’s motion works best for quantum emitters with
sharp transitions such as ions or atoms but manipulation via the effective static polarizability is also
possible in the case of molecules in standing wave [10] or ring cavities [11], or macroscopic particles
such as levitated dielectric micron-sized spheres [12–14]. Typically, the driving is done either by direct
pumping into the cavity mode via one of the side mirrors (longitudinal pumping), or indirectly via light
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scattering off the atom into the field mode (transverse pumping). For transverse pumping, an exotic
phenomenon dubbed as self-organization can occur in the many atom case [15]. Combinations of the
two techniques (as depicted in Figure 1) have been theoretically investigated in the limit of equal laser
frequencies [16]; in such a case, in a properly chosen rotating frame the effective combined optical
potential can be rendered time independent and the analysis greatly simplifies.
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Figure 1. Schematics. Illustration of the model considered involving an atom moving inside
an optical cavity with longitudinal driving of strength ηL and frequency ωL and transverse
driving ηT and frequency ωT . The interference between the longitudinally pumped field
and the field scattered from the transverse pump into the cavity mode leads to an effective
optical potential that has a time dependent part oscillating at the frequency difference
δT = ωL −ωT .

Here we depart from this scenario to consider frequency beatings between the two pumps.
While dynamics in the regime, where each pump acts alone, is well understood, extra forces arise
from the interference between photons of different frequencies: (i) scattered from the transverse light
field and (ii) entering the cavity mode from the longitudinal pump. The immediate effect of this
interference force is to generate a time-dependent optical potential with a time modulation leading to
a sign change that effectively induces the particle into undergoing jumps along the cavity sites in a
quasi-random walk fashion. We analyze such a regime both numerically and via simplified analytical
models. The mechanism is reminiscent of the one exploited in the creation of artificial potentials in
optical lattices [17] applied here to the classical regime. By discretizing the trajectories, we analyze
the emerging discrete process via its correlation function and find that it corresponds to an environment
with a very short memory. The goal of this analysis is to provide a quantum optical setting in which
the classical random walk can be observed and which would constitute a starting point into further
generalizations into the quantum regime. In this sense, this work is a stepping stones towards a proposal
for implementing a quantum random walk mirroring progress already achieved with photons [18], atoms
in optical lattices [19], ions in traps [20] or on a one-dimensional lattice of superconducting qubits [21].
Our analysis is mainly based on a single two-level system but we discuss as well an extension involving
doped micro-spheres where the field addresses a collective atomic variable (along the lines of hybrid
optomechanics with doped mechanical resonators [22]).

The paper is organized as follows: in Section 2 we introduce the model. In Section 3 we present
numerical evidence showing the occurrence of a quasi-random walk behavior and compute correlations
of the engineered process that map close to those expected from a true random walk. In Section 4, we
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present a simplified analytical model that allows us to derive the different forces acting on the particle and
identify different regimes and associated scalings for the occurrence of the random walk. In Section 5,
we discuss possible extensions of the model involving a tailored driving via a frequency comb laser.
We conclude and present an outlook in Section 6.

2. Model

We consider the effective one-dimensional model depicted depicted in Figure 1 where an optical
cavity mode at ωc, decaying at rate κ is driven through a side mirror by a laser of amplitude ηL and
frequency ωL. Transversally, a second laser drives the atom directly with effective amplitude ηT at
ωT . The longitudinal mode spatial variation inside the cavity is f(x) = cos(kx) (k is the corresponding
wave-vector for the light mode with wavelength λ = 2π/k) and the atom-photon coupling is specified by
g(x) = gf(x) (with g being the maximum coupling). The total system is described by the Hamiltonian

Ĥ = Ĥ0 + Ĥp + ĤJC (1)

consisting of a free part Ĥ0, a pumping term Ĥp and the Jaynes-Cummings interaction ĤJC . The free
evolution Hamiltonian describes the dynamics of a free particle of mass m and momentum operator p̂
plus that of the cavity mode (annihilation operator â) and the two-level atom

Ĥ0 =
p̂2

2m
+ ~ωcâ

†â+
~ωa

2
σ̂z (2)

The atom dynamics is described with the help of the Pauli operators σ̂± and σ̂z satisfying [σ̂+, σ̂−] = σ̂z

and [σ̂±, σ̂z] = ∓2σ̂±. The atom’s interaction with the cavity field is included as a Jaynes-Cummings
photon-excitation exchange process quantified by the position dependent coupling strength gf(x):

ĤJC = i~gf(x)(σ̂+â− â†σ̂−) (3)

Finally driving is included in the pump terms

Ĥp =i~ηL(â†e−iωLt − âeiωLt)+

i~ηT (σ̂+e−iωT t − σ̂−eiωT t)
(4)

including direct pumping into mode â and atom driving of the dipole operator σ̂−.
We proceed in a standard way to derive equations of motion for classical quantities [23]. First,

we make a set of transformations to dimensionless normalized position x = k〈x̂〉 and momentum
p = 〈p̂〉(~k)−1. We denote the field amplitude by α = 〈â〉 and the averaged atomic polarization by
β = 〈σ−〉 (in a frame rotating at ωL). In a first stage we consider finite saturations of the population
difference operator σ̂z whose classical average we denote by βz. We furthermore assume that the
build-up of quantum correlations between the atom and the photon field can be neglected so that we
can replace the nonlinear terms such as âσ̂z by their factorized classical averages αβz. The complete
equations of motion for atom and field are (including the dissipative dynamics of the field mode at rate
κ and of the atomic coherence at rate γ):

α̇ = (−κ+ i∆c)α− gf(x)β+ ηL (5)

β̇ = (−γ+ i∆a)β− gf(x)αβz − ηTβzeiδT t (6)

β̇z = −2γ(βz + 1)− 4gf(x)Re{β∗α} − 4ηTRe{β∗eiδT t} (7)
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We introduced the detunings ∆a = ωL − ωa, ∆c = ωL − ωc and δT = ωL − ωT (illustrated in
Figure 2 with corresponding sign conventions).

Figure 2. Frequencies. Illustration of the frequencies and detunings as defined/used in
the equations of motion. The detunings are taken with respect to the longitudinal driving
frequency such that ∆c < 0 corresponding to the stable regime of cavity QED with moving
atoms (far from motional instability points) and ∆a < 0 that corresponds to U0 = g2/∆a < 0

as for high-field seekers.

However, for the moment, we restrict our treatment to the low saturation case, where |β|2 � 1

which allows us to linearize the âσz term by setting σz → −1. Such a linearized regime allows one to
analytically derive the forces acting on the particle. Numerical evidence points out that this simplified
limit provides similar effects with the finite saturation case and we will base our analytical treatment on
the following simplified system of equations:

α̇ = (−κ+ i∆c)α− gf(x)β+ ηL (8)

β̇ = (−γ+ i∆a)β+ gf(x)α+ ηT e
iδT t (9)

The motion of the atom is described by

ẋ = 2ωrp (10)

ṗ = −2gf ′(x)Im{α∗β} (11)

where we have condensed the particle’s properties into the recoil frequency ωr = ~k2/(2m) and we
have neglected spontaneous emission induced momentum diffusion.

3. The Quasi-Random Walk—Numerical Results

Before obtaining insight from analytical considerations, we start by simulating the dynamics of the
system. This is achieved by fixing the set of parameters to: ∆a = −1.5κ, ∆c = −1.5κ, ηL = κ,
δT = π

100
κ, γ = κ, g = κ × 10−2, k = 2π and recoil frequency ωr = 0.1κ. We treat ηT as a free

varying parameter. In the following we set κ = 1 for numerical simulations and normalize the time in
units of κ−1. We choose a regime described in the next analytical section as “trapping via longitudinal
pump”, where we first tune the parameters such that trapping of the particle is ensured in the absence
of the transverse driving. We then increase ηT , and notice that past a given threshold, the particle
starts jumping out of its trapping site to the neighboring left/right sites in an apparently random way.
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In Figure 3 we exemplify such a trajectory obtained for a particle initialized with p0 = 0 around the
origin at x0 = 3.5× 10−3 and for ηT = 0.55κ.

Figure 3. Quasi-random walk trajectory. A single trajectory (black curve) overlapped with
the effective potential as a function of increasing time for lattice sites appearing at full
and half integer values of x (with λ = 1). The optical potential is illustrated as colored
background and oscillates in time with a period of T = π/δT . Note that t is dimensionless
as it is expressed in units of κ−1 and κ is set to unity.

3.1. Discrete Process—Single Trajectories

We then discretize the process by choosing time steps in units of the time period between two jumps
T , which is half the period of the potential time oscillation. At tn = nT the particle is released from
the potential and jumps to an adjacent trapping site. This is illustrated in Figure 4 as the transition
from the continuous trajectories in the upper plot to the discrete plots of site number in the middle plot.
The discrete positions (the locations of the sites) are defined as:

xn ≡
1

2T

[
2

∫ tn

tn−1

dtx(t)

]
(12)

where the square brackets stand for the rounding of the integral to the nearest integer, corresponding to
the location of the site where trapping occurs.

With the parameters from above, we then analyze the dynamics as a function of randomized initial
conditions; we initialize the particle with a momentum and position (x0, p0) ∈ [−0.1, 0.1]× [−0.1, 0.1]

inside the potential well around zero and follow the evolution over time normalized to T for 103 initial
values. First, we illustrate the mixing of trajectories, as shown in Figure 5, by color coding the trajectories
starting with x0 > 0 in green and those starting with x0 < 0 in black. The mixing is evident and can be
taken as a first indicator for randomness.
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Figure 4. Discretization of the process. (a) Example of a single continuous trajectory plotted
versus time and the corresponding discretized position as green dots in the center of one
single well oscillation; (b) Corresponding discrete trajectory over 100 jumps, which conform
to 104 time units, as a function of the jump index n; (c) Correlation function of the single
trajectory from above as a function of time delay between two occurring jumps.

One can introduce the jump sequence JN = (j1, j2, ..., jN), where the jump indicators are defined as
jn = xn+1 − xn, and according to their sign show either left or right jump behavior. One can define the
autocorrelation function for this process as

CN(τ) =
1

N − 1

N∑
n=1

(jn+τ − 〈jn〉)(jn − 〈jn〉) (13)
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which characterizes the joint probability for the occurrence of jumps separated by a time delay τT .
The behavior of this function for a single trajectory is shown in Figure 4c in the lower plot. By definition
the zero time delay correlation is normalized to unity and it decreases to values around zero where
negative values show anti-correlated jumps while positive values indicate correlated jumps.
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Figure 5. Mixing of trajectories. Simulation of 103 discrete trajectories xn(x0) as a function
of the jump number index n, starting with uniform distributed initial positions and momenta
out of the interval [−0.1, 0.1]. The color coding refers to negative/positive initial positions
(black/green): notice that the evolution completely mixes the negative and positive regions.

3.2. Discrete Process—Many Trajectories Statistics

We numerically simulate a large number of trajectories (with starting point around the origin) for
102 time steps and different values of the jump period T . The distribution of the final site occupancy
is illustrated in Figure 6a–c. The histograms of all three cases coincide with binomial distributions
expected from the classical random walk. The fitting is done with a Gaussian distribution, where the
standard deviation of the histogram is considered as the distribution’s width. The variance in position
x of the unbiased binomial distribution is given by 〈(∆xn)2〉 = a2n, where a is the constant spatial
separation of adjacent lattice sites. Since the trapping positions in our model are separated by a distance
of λ

2
and we set λ = 1, we expect a variance of 〈(∆xn)2〉 = 1

4
n. The numerically observed variances in

Figure 6d–f show a dependency of the slope of the linear increase, which is equivalent to the diffusion
constant, on the jump period T .
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Figure 6. Final site occupancy and mean variances. (a)–(c) Histograms of populations
of lattice sites at arrival. The arising distributions fit well with the expected binomial
distribution (here the fit is with a Gaussian owing to the large number of steps considered
N = 100) characteristic of a random walk. The standard deviations of the distributions vary
with the time period T between two jumps. This corresponds to different diffusion constants,
given by the slopes of the variance curves below; (d)–(f) Mean variance in position as a
function of jump index n. The linear increase with the amount of steps reproduces the main
property of a classical discrete one dimensional random walk. For T = 250 the slope is
close to the expected value of 0.25 for a perfect random walk, while the other two cases
show sub-diffusion.

The main result of the numerical section is however the behavior of the jump correlation function
averaged over many trajectories (see Figure 7). For a perfect random walk process, the correlation
function for jumps separated by τ > T would be vanishing. This corresponds to a reservoir having no
memory. In our case for T = 200 and 300 however, short time delays (below 5 jumps) are anti-correlated
while after around 5 jumps correlations occur. These anti-correlations do not occur in the second case,
which shows the best coincidence with the expectation for a perfect random walk. The anti-correlations
seem to correspond to sub-diffusion of the averaged particle motion as they favor jumps back to origin
at given time distances which might inhibit the spread of the total motion.
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Figure 7. Averaged jump-correlations. Numerical data showing the variation of the
correlation function with the delay time between jumps for different values of T . As a
basis of comparison, the correlations of a pure random walk would correspond to a function
reaching unity for τ = 0 and zero elsewhere. On the given numerical example, the
particle is subjected to an effective reservoir with a non-vanishing memory that allows for
anti-correlations of jumps close to each other. These strong negative regions are missing in
the middle case b) that corresponds to the highest diffusion.

To gain some physical understanding, one can inspect Equation (11) where the right-hand side
represents the effective optical force. In some limit (revealed by the numerical results) this force
shows effective quasi-random kicks whose correlations map onto the correlation function for the discrete
process. For perfectly uncorrelated kicks the effect would be a random walk. However, in the realistic
case some correlations between jumps remain. One can consider the following argument: the momentum
kick at one site is the integral of the force over a time T during which the force varies non-trivially. In the
continuous limit the process is deterministic. However, in the limit of many oscillations inside a single
site, the phases of the momentum kicks occurring at different sites are randomized. On the other hand
the numerical results show an alternating behavior of the system with T . The fact that e.g., the diffusion
constant decreases again from T = 250 to T = 300 gives rise for the hypotheses that this system is more
close to a random walk for special ratios of the phases of the single trapping site oscillations and the
oscillation of the potential in time.

4. Analytical Results

The dynamics numerically derived in the previous section can be explained at least in some particular
limits by a simplified model where the atomic and field degrees of freedom are eliminated and an
effective set of equations is derived for the particle motion only. Let us first rewrite the effective force
acting on the particle in the following form:

F (x, t) =− 2f ′(x)Im{α∗(gβ)} (14)

and proceed with finding analytical expressions in the adiabatic limit.
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4.1. Elimination of the Atomic Dipole

Under the assumption of purely dispersive coupling brought by the weak, far off-resonance driving
∆a � γ,ηT one can eliminate the atomic variable and compute

gβ ' i
g2

∆a

αf(x) + i
gητe

iδT t

∆a

= iU0αf(x) + iη̄T e
iδT t

(15)

where the per photon dispersive coupling is given by U0 = g2/∆a and the effective transverse pump is
defined as η̄T = gηT/∆a. Replacing the steady state value of β in the force expression we obtain:

F (x, t) =− 2f ′(x)f(x)U0|α|2 − 2f ′(x)η̄TRe{α∗eiδT t} (16)

Notice that the first term is the well-known force arising from the longitudinal pump into the cavity.
Combined with time-delay effects coming from the finite ring-down time of the cavity field, such a force
can lead to cavity cooling, heating, bistability or self-oscillations [8,9]. The second term is of more
importance in our treatment as it shows the interference between the two pumps and it contains the
time-modulation needed for the potential sign change.

4.2. Elimination of the Field Variable

Since the time-delay effects do not play a role in the occurrence of jumps, we proceed by considering
the limit of small U0 where we eliminate the cavity field. Replacing β from Equation (15), leads to

α̇ =
[
−κ+ i(∆c − U0f

2(x)
]
α+ ηL − iη̄Tf(x)eiδT t (17)

Under the assumption that ηL, η̄T � max(κ,∆c) and defining a position dependent cavity detuning
∆c − U0f

2(x) ≡ ∆(x), one obtains:

α =
ηL − iη̄Tf(x)eiδT t

κ− i∆(x)
(18)

We now can compute the cavity photon number

|α|2 =
η2
L + η̄2

Tf(x)2 + 2ηLη̄Tf(x) sin(δT t)

κ2 + ∆(x)2
(19)

as well as

Re{α∗eiδT t} =
ηL [κ cos δT t+ ∆(x) sin(δT t)] + ∆(x)f(x)η̄T

κ2 + ∆2(x)
(20)

and replace these expressions in Equation (16).
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4.3. Optical Forces

We can now group the different terms contributing to the total optical force acting on the particle as
follows: (i) arising from the longitudinal field; (ii) from the transverse field and (iii) a time dependent
interference term. Explicitly writing the three terms as F (x, t) = FL(x)+FT (x)+FLT (x, t), we compute

FL =− 2f ′(x)f(x)
η2
L

κ2 + ∆2(x)
U0 (21)

Which describes the standard cos2(x) optical potential induced by the longitudinal pump. The next
term is

FT =− 2f ′(x)f(x)
η̄2
T

κ2 + ∆2(x)
∆c (22)

and it shows the effect of the time-independent interference between transverse pump photons and the
particle scattered photons filling the cavity mode. The most interesting term is

FLT =2f ′(x)
η̄TηL

κ2 + ∆2(x)
[κ cos(δT t)

+ (∆c + U0f
2(x)) sin(δT t)] (23)

showing modulation in time at δT . Notice that the time independent limit can be reached by setting
δT = 0, and this force reduces to 2f ′(x)η̄TηLκ/(κ

2 + ∆2(x)).

4.4. Trapping by Interference

Let us consider the limit of small g and tune the driving field amplitudes such that ηT � gηL while
at the same time ηT � ηL∆a/(g∆c). To satisfy both conditions simultaneously one has to require
U0∆c � 1. Under these conditions, the time interference force is dominant and gives rise to an effective
time-modulated trapping potential. We neglect the spatial modulation U0f

2(x) as well with respect to
the larger ∆c and obtain the total force on the particle simplified to:

F '− 2 sin(x)
η̄TηLκ

κ2 + ∆2
c

cos(δT t− φ∆) (24)

where the phase is defined as: φ∆ = arctan ∆c

κ
. The equations of motion for the particle are those of

a frequency modulated pendulum and similar to the ponderomotive force with an important difference
in that the amplitude of the driving changes sign periodically. In the limit of good localization (where
we can expand sin(x) ' x) we identify this as a restoring force for an harmonic oscillator with a time
dependent normal frequency. We can readily compute the maximum trapping frequencyωtr as

ω2
tr,LT =4ωrκ

η̄TηL

κ2 + ∆2
c

(25)

The quasi-random walk behavior arises from the periodic force sign change which, after a number
of oscillations at a given site (roughly proportional to T/Ttr,LT where Ttr,LT = 2π/ωtr,LT ) forces the
particle to settle itself inside an adjacent well.
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4.5. Trapping by Longitudinal Pumping

A different regime is reached when the FL and FLT contributions are of the same order of magnitude.
We achieve this by first turning on the longitudinal pump and see that a trapping time-independent
potential is established. Along the equilibrium points, the longitudinal trapping frequency is around:

ω2
tr,L =8ωr

U0η
2
L

κ2 + ∆2
c

(26)

Tuning up the transverse pump, a time modulation of the trap frequency is achieved and a threshold
emerges for ηT (for a rough estimate one can equate the maxima of FL and FLT ) after which the particle
starts jumping to adjacent sites. Given the two different spatial modulations of the forces, sin(2x) vs.
sin(x), a double well structured potential arises with frequencies:

ω̄2
tr,L =8ωr

ηL(U0ηL ± ηT )

κ2 + ∆2
c

(27)

4.6. Brownian Motion for Non-Delta Correlated Forces

We have already observed that a low diffusion constant is connected to oscillations in the correlation
function C(τ), namely negative parts showing anti-correlations of jumps. While in the previous sections
we discussed the discrete random walk process, we move now to the continuum and test that for a
process undergoing brownian motion, non-delta correlated forces can indeed give rise to sub-diffusive
behavior (i.e., the convergence of the variance in space as function of time to a linear function with a
slope below the solution for a delta-correlated force). The ansatz that we take for the expressions of the
force-correlations is suggested by the shape of the jump-correlation functions of the discrete process.
We start by assuming a particle underlying the stochastic equation of motion

dv

dt
= −λv + ξ(t) (28)

Following the derivation in [24] the variance in space is

〈
(∆x)2

〉
=

∫ t

0

dt′
∫ t

0

dt′′φ(t′)φ(t′′) 〈ξ(t′)ξ(t′′)〉 (29)

with φ(t′) = 1
λ
(1− eλ(t′−t)) and the analytical solution for 〈ξ(t′)ξ(t′′)〉 = 2dδ(t′ − t′′) is

〈
(∆x)2

〉
=

2d

λ2
(t− 2

λ
(1− e−λt) +

1

2λ
(1− e−2λt)) (30)

For large times (or large λ) the expression above converges to the expected linear dependence
〈(∆x)2〉 = 2d

λ2
t. In our units, this corresponds to the typical linear diffusion with a slope of 1/4. We now

compare this solution to the numerically calculated variance for a force-correlation function of Gaussian
and exponential shape times a cosine modulation for different oscillation frequencies. The expressions
that we test are

〈ξ(t′)ξ(t′′)〉 = 2d

{
e−(t′−t′′)2/2σ2

e−|t
′−t′′|/σ

}
cos(Ω(t′ − t′′)) (31)
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We keep the width for all test functions fixed on a value of σ = 0.5 and vary the oscillation frequency
Ω from 0.5 to 2.0 in steps of size 0.5.

As seen in Figure 8, the anti-correlations for this continuous process drop the diffusion of the particle’s
motion drastically and thus lead to sub-diffusion as expected. One should consider the fact that in this
scenario the correlation functions do not converge to delta functions in the limit of vanishing width and
frequency since they are not normalized.
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Figure 8. Force correlation functions and numerical solutions of the variance. (a),(b)
Correlation as a function of time delay is illustrated for width σ = 0.5 and frequencies
Ω = 0.5 (black, full line) and 2.0 (black, dashed) for the Gaussian (left) and the exponential
(right) case. The values of the local minima become lower as Ω increases and expand the
segments of anti-correlation; (c),(d) Variances (same color pattern as above) converging to
linear functions with slopes below the analytical solution (red dashed line).

5. Discussions

5.1. Frequency Comb Driving

In the limit where the pump interference provides the sole trapping mechanism, the force acting on
the particle as in Equation (24) reminds of a parametrically driven pendulum. The dynamics consists of
pendulum motion inside a given trap (which reduces to harmonic motion in the limit of good localization)
with a time modulated frequency. However, one can engineer a multiple frequency transversal pumping
scheme where the time modulation becomes a periodic kick instead of a sinusoidal function. To this
end we consider a frequency comb driving (with 2Nf + 1 frequencies) with the minimum frequency
separation δ and centered at ωL, such that the pump frequencies are ωT,j = ωL − jδ. If we neglect
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spontaneous atomic decay and the coupling between atom and cavity field, Equation (9) with the total
pump term inserted gives

β̇(t) ' i∆aβ+ ηT

Nf∑
n=−Nf

einδt (32)

In the limit Nf → ∞ the driving on the right-hand side becomes a Dirac comb function. Inserting
the steady state solution of Equation (32) together with α ' ηL into Equation (11) we get an equation of
motion that maps onto the kicked rotor dynamics:

ṗ ' −ηLη̄T
Tδ

sin(x)
∑
n∈Z

δ(t− nT) (33)

where Tδ = 2π/δ. Together with Equation (11) the system can be exactly described via a transformation
to the discrete and can be shown to exhibit chaotic motion past a threshold characterized by the tuning
up of the force amplitude factor.

5.2. Hybrid Optomechanics with Doped Nano-Spheres

We can extend our treatment to consider a hybrid optomechanical system where we replace the two
level system with a doped nano-sphere containing a collection of N such systems. We assume the
nano-sphere transparent to light except for the doped part where the cavity mode excites a transition
close to resonance. Let us consider the nano-particle of mass M with radius much smaller than specific
length in which the cavity mode changes considerably (the cavity mode wavelength). The light-matter
interaction takes place via the Tavis-Cummings Hamiltonian, that changes from the single atom picture
in that σ̂± is replaced by

∑
j σ̂
±
j ≡ S±. In the bosonic limit, where the saturation is very low, we can

assume that [S−, S+] = −N and proceed to write equations for averages (βN = 〈Ŝ−〉):

α̇ = (−κ+ i∆c)α− gf(x)βN + ηL (34)

β̇N = (−γ+ i∆a)βN + gNf(x)α+NηT e
iδT t (35)

The immediate gain in this approach from the single atom approach is the relaxation of the
requirement of |β|2 � 1 that turns into |βN |2 � N . However one has to pay the price of a reduced
recoil frequency owing to an increased mass at least N times larger. The upshot is that a cavity QED
regime, where we would expect a quasi-random walk with a macroscopic particle, can be unraveled.

5.3. Implementation Considerations

To experimentally observe the proposed quasi random walk, we advance a possible two step
experimental procedure: (i) turn on longitudinal pumping detuned by −κ from the resonance such that
cavity cooling takes place in the absence of transverse pumping and (ii) turn on ηT past the threshold
such that jumps are initiated. The typical cooling procedure can ideally cool the particle towards a
thermal wavepacket with minimum energy ~κ divided between the position and momentum quadratures
(according to the thermal equipartition principle). In terms of normalized momentum and position initial
variations this corresponds to δp0 = 1/

√
2ωr and δx0 = 1/(

√
2U0ηL). For localization within a site
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notice that we require δx0 � 1 which results in U0η
2
L � 1. This can be still fulfilled in the polarizable

particle regime by tuning η such that g2/∆a � 1 while gηL � 1.

6. Conclusions and Outlook

We considered the dynamics of particles (either as single two-level systems or sub-micron spheres
doped with multiple emitters) inside time-dependent potentials resulting from interference in a two-color,
two directional pump scheme. Past a given threshold, chaotic-like behavior can be observed, with
correlations very close to those of a typical random walk. Depending on the beat frequency, the particles
motion exhibits sub-diffusion that can be related to anti-correlations of the acting force. Analytically the
system in the steady state can be reduced to a pendulum with a time dependent frequency modulation.

While the treatment here is in the classical regime, an immediate generalization into the quantum
realm can be made by either: (i) treating motion classically and considering the effect of the quantum
nature of the two-level system onto the dynamics or (ii) treating motion quantum mechanically and
analyzing the dynamics of an initial wave packet, with direct connection to matter-wave interferometry
applications. Another future direction aims to extend the 1D treatment to 3D dynamics where the beating
of the two pumps give rise to an effective ponderomotive force. Investigations will be carried out
on the possibility to exploit such a force for all optical trapping of polarizable particles (or realistic
multilevel atoms) inside 3D optical cavities, similar to the mechanism employed in ion trapping inside
linear Paul traps.
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