Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Aquatic Respiration Rate Measurements at Low Oxygen Concentrations

MPG-Autoren
/persons/resource/persons210462

Holtappels,  M.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210495

Kalvelage,  T.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210568

Lavik,  G.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210556

Kuypers,  M.
Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Holtappels14.PDF
(Verlagsversion), 707KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Holtappels, M., Tiano, L., Kalvelage, T., Lavik, G., Revsbech, N., & Kuypers, M. (2014). Aquatic Respiration Rate Measurements at Low Oxygen Concentrations. PLoS One, 9(2): e89369, pp. 1-10.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-C5D7-E
Zusammenfassung
Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX), optical sensors (optodes), and mass spectrometry in combination with O-18-18(2) labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L-1 h(-1) were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L-1 h(-1) were suitable for rate determinations in open ocean water and were lowest at the lowest applied O-2 concentration.