English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Evaluation of gene expression analysis using RNA-targeted partial genome arrays

MPS-Authors
/persons/resource/persons210884

Würdemann,  C.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210664

Peplies,  J.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210764

Schübbe,  S.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210354

Ellrott,  A.
Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210766

Schüler,  D.
Department of Microbiology, Max Planck Institute for Marine Microbiology, Max Planck Society;

/persons/resource/persons210403

Glöckner,  F. O.
Microbial Genomics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Würdemann, C., Peplies, J., Schübbe, S., Ellrott, A., Schüler, D., & Glöckner, F. O. (2006). Evaluation of gene expression analysis using RNA-targeted partial genome arrays. Systematic and Applied Microbiology, 29(5), 349-357.


Cite as: https://hdl.handle.net/21.11116/0000-0001-CF53-9
Abstract
Highly parallel cDNA targeting microarrays have been established over the last years as the quasi-standard for genome wide expression profiling in pro- and eukaryotes. Protocols for the direct detection of RNA or aRNA (amplified RNA) are currently emerging. This allows to circumvent the bias introduced by enzymatic target molecule preparation. To systematically evaluate the extent of non-specific target binding on oligonucleotide microarrays designed for total RNA expression profiling, a model system of 70-mer probes targeting genes involved in magnetosome formation (mam genes) of the bacterium Magnetospirillum gryphiswaldense was established utilizing wild-type strain MSR-1 and an isogenic deletion mutant MSR-1B that lacks all mam genes. An optimized protocol for the direct chemical labelling of total cellular RNAs was used. A linear correlation between the amount of applied RNA and the mean global background intensity was found which enables a simple and unbiased way of normalizing the data. The results obtained with the mam deletion mutant MSR-1B revealed a significant number of false positive signals, even under optimal hybridization conditions. This indicates a high degree of non-specific binding in microarray experiments when using longer oligo- or polynucleotides and RNA as target molecule. Comparative microarray analysis of an MSR-1B culture and two MSR-1 wild-type cultures grown under different conditions was done via a three-colour hybridization assay. The additional information provided by the MSR-1B transcriptome revealed differential gene expression in the two MSR-1 cultures, which was otherwise undetectable.