Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Experimental and Theoretical Soft X-Ray Absorption Study on Co3+ Ion Spin States in Sr2-xCaxCoO3F

MPG-Autoren
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chin, Y.-Y., Hu, Z., Su, Y., Tsujimoto, Y., Tanaka, A., & Chen, C.-T. (2018). Experimental and Theoretical Soft X-Ray Absorption Study on Co3+ Ion Spin States in Sr2-xCaxCoO3F. Physica Status Solidi RRL - Rapid Research Letters, 12(8): 1800147, pp. 1-6. doi:10.1002/pssr.201800147.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-F78B-C
Zusammenfassung
To investigate the influence of chemical pressure on the e(g) orbital occupation and the spin state of Co3+ ions, which are closely related to electrochemical reaction of catalysts for energy storage applications, we have prepared a new material Sr1.7Ca0.3CoO3F, which was previously predicted to possess an intermediate-spin (IS) state with e(g)(1) configuration. Our experimental Co-L-2,L-3 X-ray absorption spectrum of Sr1.7Ca0.3CoO3F was very similar to those of the high-spin (HS) Co3+ references Sr2CoO3F and Sr2CoO3Cl indicating an HS Co3+ ground state. The HS-Co3+ ground state in Sr1.7Ca0.3CoO3F was further confirmed by using O-K XAS spectra and theoretical simulation of the Co-L-2,L-3 XAS spectra with configuration-interaction cluster calculations. We present theoretical energy diagrams of three spin states for Co3+ ions in Sr2CoO3F as a function of external pressure based on the crystal structures observed in a previous high-pressure study. We have also investigated the structural conditions that are required to stabilize the IS state in this effective local pyramidal structure theoretically, and found that the in-plane Co-O distance (<1.88 angstrom) and the out-of-plane Co displacement (<0.18 angstrom) are critical conditions for obtaining the IS-Co3+ ground state.