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The generation of entanglement between disparate physical objects is a key ingredient in the field
of quantum technologies, since they can have different functionalities in a quantum network. Here
we propose and analyze a generic approach to steady-state entanglement generation between two
oscillators with different temperatures and decoherence properties coupled in cascade to a common
unidirectional light field. The scheme is based on a combination of coherent noise cancellation and
dynamical cooling techniques for two oscillators with effective masses of opposite signs, such as quasi-
spin and motional degrees of freedom, respectively. The interference effect provided by the cascaded
setup can be tuned to implement additional noise cancellation leading to improved entanglement
even in the presence of a hot thermal environment. The unconditional entanglement generation is
advantageous since it provides a ready-to-use quantum resource. Remarkably, by comparing to the
conditional entanglement achievable in the dynamically stable regime, we find our unconditional
scheme to deliver a virtually identical performance when operated optimally.

Entanglement is a peculiar property of quantum
physics and a key technological resource in quantum in-
formation processing [1] and quantum metrology [2, 3],
allowing improvements of atomic clocks [4, 5] and op-
tical magnetometers [6, 7]. Moreover, entanglement is
often used to delineate the boundary between classical
and quantum physics. Generating entanglement for ever-
larger objects therefore establishes the reach of quantum
mechanics into the macroscopic realm. Entanglement be-
tween separate macroscopic systems has already been re-
alized with pairs of atomic vapor ensembles [7–9] and dia-
monds [10] at room temperature, and mechanical oscilla-
tors at cryogenic temperatures [11, 12]. However, gener-
ation of entanglement in hybrid systems composed of dis-
parate macroscopic objects is an outstanding challenge—
in particular due to the presence of the hot thermal envi-
ronment. Such hybrid entanglement would combine at-
tractive features of very different systems as required to
realize complex quantum information networks [13].

In this Letter, we devise an efficient scheme for un-
conditionally entangling two macroscopic systems with
potentially very different decoherence properties. The
scheme works for two generic bosonic oscillators cou-
pled linearly to a unidirectional traveling light field, with
the extra provision that their effective masses have op-
posite signs. A negative mass oscillator in the entan-
glement context was first used in Ref. [8], and further
extensively developed for collective degrees of freedom
in polarized spin ensembles prepared in an energetically
inverted state [14, 15] such as in atomic ensembles at
room temperature in free space [16, 17], cold atoms in
Bose-Einstein condensates [18], optical cavities [19, 20],

or trapped in 1-dimensional arrays [21, 22] as well as
in solid-state ensembles of nitrogen-vacancy centers [23]
and quasi-spins of rare-earth-ion doped crystals [24, 25].
The positive mass subsystem can, naturally, be imple-
mented in a wider range of systems, in particular in mo-
tional degrees of freedom, e.g., the center-of-mass mo-
tion of ensembles of atoms [20, 26, 27] or ions [28] and
micromechanical oscillators [11, 12, 29–31]. A motional
degree of freedom can also implement an effective neg-
ative mass by employing two-tone driving schemes [32]
(see also Ref. [33]).

An essential mechanism of our scheme is coherent
quantum noise cancellation (CQNC) of the back action
(BA) of light on the two oscillators. This hinges on the
observation that for two oscillators with masses of oppo-
site signs, m+ = −m− := m > 0, we have (d/dt)[X̂+ +
X̂−] = [P̂+ − P̂−]/m for which [X̂+ + X̂−, P̂+ − P̂−] = 0,
where X̂± and P̂± are canonical conjugate variables for
the positive (negative) mass oscillator. Hence, this pair
of variables is classical in the sense that the Heisenberg
uncertainty relation imposes no constraint on the simul-
taneous knowledge of them [8, 14, 15]. This is possi-
ble because (for ideally matched oscillators) the asso-
ciated measurement BA goes into the canonically con-
jugate joint variables, while interfering destructively in
the BA-free variables. Measuring the latter beyond the
Heisenberg limit of the individual systems entails en-
tanglement between the two oscillators. CQNC based
on this principle has previously been analyzed theoret-
ically in the context of sensing beyond the standard
quantum limit (SQL) [14, 34–38] and realized experi-
mentally using two mechanical oscillators [32] and in a
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Figure 1. Hybrid system consisting of two oscillators with
negative and positive mass, respectively, typically imple-
mented in collective spin (S) and motional (M) degrees of
freedom. These are coupled in cascade to a common unidi-
rectional light field via quadratic interactions induced typi-
cally by a strong, classical carrier. For each oscillator, this
results in Stokes and anti-Stokes sidebands proportional to
rates ΓjP/B and of width γj , j ∈ {S,M} (see inset); the ef-
fective resonance frequency Ωj ≡ sgn(mj)ωj accounts for,
e.g., the fact that energy must be extracted from a negative-
mass oscillator to excite it. The joint interaction with the
light field is best described by homodyne quadratures X̂L, P̂L

(symmetrized combinations of sidebands), whose initial state
X̂L,in, P̂L,in is vacuum (see lower part of figure). The nega-
tive mass system is driven by X̂L,in only (ΓSP = ΓSB) and
its response is mapped onto P̂L. The positive mass system is
likewise coupled to X̂L,in, but also to P̂L (ΓMP < ΓMB) at an
adjustable rate R, so that the response of the negative mass
system drives the positive mass system. Consequently the re-
sponse of the positive mass system will interfere destructively
with that of the negative mass system in the outgoing field
quadrature P̂L,out as can (optionally) be verified by homodyne
detection. Additionally, the oscillators are driven by distinct
thermal reservoirs with decoherence rates γ̃j,0 (wavy arrows).

spin-optomechanical hybrid system [39]. It has also been
analyzed as a means of entangling two atomic spin [40, 41]
or mechanical [35, 42] systems as has been demonstrated
in experiment [7–9, 12].

However, the theoretical studies have mostly fo-
cused on oscillators with identical or negligible intrinsic
linewidths, a condition which is difficult to meet in prac-
tice for disparate hybrid systems. The present scheme
circumvents this restriction by interfacing the two oscil-
lators unidirectionally. The resulting causal asymmetry
permits efficient CQNC even for vastly different intrinsic
linewidths, thereby facilitating entanglement generation.
Model.—We consider a generic hybrid system com-

posed of two subsystems with effective masses sgn(mS) =
−sgn(mM) < 0 coupled to a unidirectional opti-
cal field [Fig. 1] (near-ideal unidirectionality has been
achieved experimentally, e.g., see Refs. [7, 39]). Both sub-
systems are driven by individual thermal reservoirs. The
positive/negative mass subsystem is referred to as a mo-
tional/collective spin (M/S) degree of freedom and rep-
resented by a localized bosonic mode with dimensionless
canonical variables. These variables satisfy [X̂j , P̂k] =
iδj,k, (j, k ∈ {M,S}) resulting from a rescaling by the
zero-point fluctuation amplitudes xj,zpf =

√
~/(|mj |ωj)

and pj,zpf = ~/xj,zpf, where ωj is the resonance frequency.
The free evolution of the hybrid system is (setting ~ = 1)

Ĥ0 =
∑

j∈{M,S}
sgn(mj)

ωj
2

(X̂2
j + P̂ 2

j ), (1)

and hence a negative mass translates into a negative effec-
tive resonance frequency Ωj ≡ sgn(mj)ωj for the dimen-
sionless variables, inverting the sense of rotation in the
{X̂j , P̂j} phase space [Fig. 1] and making the state with
zero quanta its highest energy state (not to be confused
with a positive mass oscillator with an inverted potential,
Ĥ0 ∝ −X̂2

j + P̂ 2
j ). We specialize to the resonant scenario

ωM = ωS := ω.
We introduce annihilation operators for the local-

ized modes, X̂j = (âj + â†j)/
√

2 and P̂j = (âj −
â†j)/(

√
2i), and the propagating field linking them, b̂(t) =

(2π)−1/2
∫∞
−∞ b̂(Ω)e−iΩtdΩ (defined in a rotating frame

with respect to the optical carrier). The Hamiltonian for
two-mode quadratic interaction between the localized os-
cillators and the light field is [40, 41]

Ĥint =
∑

j∈{M,S}
(
√

ΓjBâ
†
j b̂(tj)+

√
ΓjPâ

†
j b̂
†(tj)+H.c.), (2)

where we assume tS < tM, i.e., the optical field inter-
acts with S first. Equation (2) comprises two kinds
of interaction: beam-splitter (B), ∝ (â†j b̂ + H.c.), and
parametric down-conversion (P), ∝ (â†j b̂

† + H.c.), j ∈
{M,S}. These processes produce sidebands at rates
ΓjB = Γj sin2 θj ,ΓjP = Γj cos2 θj [Fig. 1, inset], which
we parametrize by Γj = ΓjB + ΓjP and θj ∈ [0, π/2], the
coupling rates and angles.

An excitation in the upper sideband from the positive-
(negative-)mass oscillator arises from

√
ΓMBâMb̂

†

(
√

ΓSPâ
†
Sb̂
†), simultaneously removing (adding) an

oscillator quantum (analogously for the lower side-
band). This indistinguishability of adding a quantum
to one subsystem and removing one from the other
as energy is either added or removed by the common
light field permits the system to be driven into a
two-mode-squeezed entangled state accompanied by
CQNC of the BA contribution to the joint output field.
Perfect indistinguishability necessitates ΓMB = ΓSP and
ΓMP = ΓSB, i.e., θM = −θS + π/2 and ΓM = ΓS, but
also the temporal responses of the subsystems must be
suitably matched. However, whenever θM 6= θS there is
an overlap between the light quadrature reading out S
and the quadrature driving M , i.e., the spin response to
light and thermal forces drives the motional mode. This
induces a tunable interference effect that can implement
additional quantum and classical noise cancellation
even for highly asymmetric subsystems, leading to
unconditional entanglement generation competitive with
conditional schemes—this is the main finding of this
Letter.
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The regime of interest is ωj � Γj & γ̃j,0, where γ̃j,0
is the thermal decoherence rate, providing the time-scale
separation required for probing the system over several
quantum-coherent oscillations. This permits treating
Eq. (2) in the rotating wave approximation (RWA), i.e.,
retaining only slowly varying terms, and implies that the
interaction with light is confined to two disjoint sidebands
b̂−(t) + b̂+(t) := (2π)−1/2(

∫ 0

−∞+
∫∞

0
)b̂(Ω)e−iΩtdΩ =

b̂(t), [b̂±(t), b̂†±(t′)] = δ(t − t′), centered at frequencies
Ω = ∓ω (relative to the carrier). We introduce the
non-Hermitian homodyne two-mode quadratures X̂L :=
(b̂+ + b̂†−)/

√
2 and P̂L := (b̂+ − b̂†−)/(

√
2i). Performing

the RWA we find

Ĥint ≈ â†M
√

ΓMQ̂θ′M(tM) + âS
√

ΓSQ̂−θ′S(tS) + H.c., (3)

where Q̂θ′ := cos θ′X̂L + i sin θ′P̂L, θ′j = θj − π/4. Equa-
tion (3) indicates that the cosine and sine components of
the phase quadrature ∝ P̂L + P̂ †L read out the (unnormal-
ized) EPR-type variables

√
ΓM cos θ′MX̂M+

√
ΓS cos θ′SX̂S

and
√

ΓM cos θ′MP̂M −
√

ΓS cos θ′SP̂S, respectively. These
commute when

√
ΓM cos θ′M =

√
ΓS cos θ′S, in which case

they can be BA-free.
Eliminating the light field and using a co-propagating

time coordinate t′ = t− x/c (dropping the prime hence-
forth), the Heisenberg-Langevin equations can be ex-
pressed in terms of the forces f̂j :=

√
γj,0âj,in + f̂j,ba as

[henceforth âj is in the rotating frame of Ĥ0 (1)] [43–45]

d

dt
âS = −γS

2
âS + f̂S,

d

dt
âM = −γM

2
âM + f̂M +

√
1− εRâ†S, (4)

where

f̂S,ba := − i(
√

ΓSBb̂−,in +
√

ΓSPb̂
†
+,in),

f̂M,ba := − i
√

1− ε(
√

ΓMBb̂+,in +
√

ΓMPb̂
†
−,in)

− i√ε(
√

ΓMBb̂
′
+,in +

√
ΓMPb̂

′†
−,in). (5)

Here, an additional uncorrelated vacuum b̂′±,in im-
pinges on M due to transmission (power) loss ε >
0 between the subsystems. The vacuum fields sat-
isfy 〈b̂±,in(t)b̂†±,in(t′)〉 = 〈b̂′±,in(t)b̂′†±,in(t′)〉 = δ(t − t′).
[âj,in (t) , â†j,in (t′)] = δ(t − t′), j ∈ {M,S}, represent
the thermal noise fluctuations with 〈âj,in (t) â†j,in (t′)〉 =
(n̄j + 1)δ(t − t′) in terms of the thermal occupancy n̄j .
For example, for S, n̄S > 0 represents the additional noise
present for an imperfectly polarized ensemble, while for
M, n̄M ≈ kBTM/(~ωM) at ambient temperature TM (kB
is the Boltzmann constant). The effective linewidths (in-
cluding dynamical broadening from the light field cou-
pling) are denoted γj = γj,0 − Γj cos(2θj), where γj,0 is
the linewidth in absence of dynamical broadening; dy-
namical stability requires γj > 0. Finally, due to the

unidirectionality of the light field, information can only
propagate from the first to the second subsystem in the
cascade. The corresponding unidirectional coupling rate
is R =

√
ΓSBΓMP −

√
ΓMBΓSP = −√ΓMΓS sin(θM − θS).

For R = 0 ⇔ θS = θM, Eqs. (4) decouple so that cor-
relations build up solely due to those between f̂S,ba and
f̂M,ba, and the ordering of oscillators becomes immate-
rial (assuming ε = 0). In contrast, R 6= 0 gives rise to a
nontrivial asymmetry of the cascaded system (4), which
is exploited below for improved noise cancellation and
entanglement generation.
Unconditional steady-state solution.—The steady-

state solution to Eqs. (4) is

âS(t) =

∫ t

−∞
dt′e−(t−t′)γS/2f̂S(t′),

âM(t) =

∫ t

−∞
dt′{e−(t−t′)γM/2f̂M(t′) (6)

+
2
√

1− εR
γM − γS

[e−(t−t′)γS/2 − e−(t−t′)γM/2]f̂†S(t′)}.

For R = 0, the steady states of the individual subsystems
are determined solely by the (stochastic) driving forces
in the past time interval of duration ∼ 1/γj . Hence,
whenever γM 6= γS the different temporal responses to the
BA b̂±,in will result in imperfect CQNC. However, if it is
the second system (M) in the cascade which is relatively
short-lived, γM > γS, then for R 6= 0 the unidirectional
coupling term ∝ Ra†S [Eq. (4)] effectively prolongs the
memory time 1/γM by driving M with the spin response
contained in the light field, resulting in improved CQNC
for R < 0⇔ θM > θS. Ideal cancellation can be achieved
in the adiabatic limit γM � γS and 2R/γM → −1 (for
ε = 0) [Eq. (6)], which is compatible with the demand
for near-ground-state dynamical cooling of the motional
mode γM � γ̃M,0, where γ̃j,0 := γj,0(n̄j + 1/2). The
additional interference arising for R < 0 does not rely on
the opposite signs of masses (in contrast to the scheme as
a whole) and can simultaneously suppress both quantum
noise and the spin thermal noise, thereby removing the
need for dynamical spin cooling.

From Eqs. (6) the entries of the covariance matrix in
steady state are

∆2X̂S =
1

γS
(
ΓS

2
+ γ̃S,0),

∆2X̂M =
1

γM
(
ΓM

2
+ γ̃M,0 +

√
1− εR〈X̂S, X̂M〉), (7)

〈X̂S, X̂M〉 = −2
√

1− ε
γS + γM

(
√

ΓSΓM sin(θM + θS)− 2R∆2X̂S),

where 〈X̂S, X̂M〉 := 〈X̂SX̂M〉+〈X̂MX̂S〉−2〈X̂S〉〈X̂M〉. As
our entanglement figure of merit we consider the variance
of generalized EPR variables of the form [46, 47]

ξg =
∆2(X̂S + gX̂M) + ∆2(P̂S − gP̂M)

1 + g2
< 1, (8)
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Figure 2. Entanglement ξg (< 1 in the colored region) as
a function of quantum cooperativities of the spin (CS) and
motional (CM) subsystems for optimized coupling angles θS
and θM while fixing the parameters γS,0 = 2π × 5kHz, n̄S =
1, γM,0n̄M = 2π×10kHz, and assuming no transmission losses,
ε = 0. Optimal CM for given CS is indicated by the dashed-
dotted curve. Imposing the additional constraint θS = θM ⇒
R = 0, entanglement ξg < 1 is only possible in the subregion
delineated by the solid contour.

which is the inseparability criterion for Gaussian states
and any g ∈ R. The steady-state value of ξg can be evalu-
ated using the solution (7), noting that ∆2(X̂S +gX̂M) ≈
∆2(P̂S − gP̂M) within the RWA. In principle, ξg can be
minimized over g, but verifying such entanglement ex-
perimentally requires individual, and hence destructive,
readout of the two subsystems. Since our scheme auto-
matically and non-destructively produces readout of the
EPR variables with g =

√
ΓM/[(1− ε)ΓS] cos θ′M/ cos θ′S

[see discussion below Eq. (3)], which can be BA-free when
g → 1 and ε → 0, we henceforth fix g by the aforemen-
tioned expression.
Spin-optomechanical implementation.—Let us con-

sider a spin-optomechanical implementation [16, 48] (see
Ref. [49] for a derivation of Eqs. (4), (5) in this context).
Optomechanical systems are routinely operated in the
quantum regime, allowing ground-state cooling by dy-
namical broadening (γM > γM,0 ⇔ θM > π/4) even for
n̄M � 1. For the mechanical system, γM,0 is usually due
to intrinsic dissipation alone, such as friction, whereas
for the spin oscillator, γS,0 (typically � γM,0) is often
dominated by optical power broadening induced by the
coherent driving. For quantum cooperativities defined as
Cj := Γj/γ̃j,0, the value of CS is independent of the drive
power in this regime.

Conditional entanglement in a spin-optomechanical
system was previously analyzed for a pulsed quantum
non-demolition (QND) measurement of the hybrid EPR
variables [50] which projects the system into an entangled
state fulfilling Eq. (8); this approach has been demon-
strated for two atomic spin ensembles [8]. In contrast to
that protocol, steady-state unconditional entanglement
is a ready-to-use resource [9, 51] available on demand at

any moment in time.
Figure 2 presents the optimized unconditional steady-

state entanglement (8) as a function of Cj , illustrating
the relaxation of parameter requirements compared to
dissipative entanglement generation (R = 0, both sub-
systems are driven optically only by the common vacuum
field). Since the tunability of free-space spin systems
is limited by the atomic density, we henceforth assume
the bottleneck to be the spin system, characterized by
a maximally attainable CS, whereas CM is freely tun-
able and thus can be fixed at its optimal value [Fig. 2,
dashed-dotted curve]. Under these conditions, optimiza-
tion requires the two subsystems to be coupled asym-
metrically to the field: The optimal θM favors beam-
splitter interaction π/2 ≥ θM,opt > π/4, while for S,
the Stokes and anti-Stokes processes should be balanced,
θS,opt ≈ π/4 ⇔ ΓSB ≈ ΓSP (QND interaction) yielding
R < 0 [Fig. 3, inset]; this is the scenario illustrated in
Fig. 1. The resulting effective motional linewidth consid-
erably exceeds that of S, γM � γS, in the regime of sub-
stantial entanglement, thereby reversing the hierarchy set
by the intrinsic linewidths γM,0 � γS,0 while providing
strong dynamical cooling of the motional thermal noise
γ̃M,0, which is essential to unconditional operation. Since
γS ∼ γS,0 for θS ≈ π/4, the suppression of spin thermal
noise is due mainly to coherent cancellation in contrast
to previous work relying on dynamical spin cooling in the
dissipative regime (R ≈ 0) [9, 40, 41].

1 10 102 103
0.01

0.1

1

CS

ξ
g

1 10 102 103
10-4
10-3
10-2

0.01

0.1

1

Figure 3. Entanglement ξg as a function of spin cooperativity
CS for optimized coupling angles θS, θM and motional cooper-
ativity CM when R = 0 (thin black curves) and R 6= 0 (thick
red curves), when transmission loss is absent, ε = 0 (solid),
and present, ε = 0.1 (dashed). (Inset) Plot of −2

√
1− εR/γM

(right scale, brighter green curves) as a function of CS used
in evaluating the optimized curves of the main plot, and
the relative entanglement improvement (left scale, darker red
curves) of the conditional scheme over the optimal uncon-
ditional scheme (referenced to the latter) for ε = 0.1; the
conditional performance is evaluated using parameters opti-
mized for the unconditional scheme (dashed) and optimal con-
ditional parameters for QND readout θS = θM = π/4 (solid).
The fixed parameters are γS,0 = 2π × 5kHz, n̄S = 1, and
γM,0n̄M = 2π × 10kHz.

In the absence of transmission loss (ε = 0), the asymp-
totic scaling of the unconditional entanglement is ξg ≈√

[1 + r + 1/(2n̄S + 1)]/(2CS), where r = γ̃M,0/γ̃S,0. An
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improvement by up to a factor of 2 can be found
when comparing to the dissipative case (R = 0), ξg ≈√

2(1 + r)/CS [Fig. 3] (see Ref. [49] for derivations of
scalings). The presence of loss ε > 0 imposes a lower
bound ξg ≥

√
ε/(4− 3ε), which is also an improvement

of up to a factor of 2 compared to R = 0.
Comparison with conditional scheme.—Another

benchmark is the conditional steady-state entanglement
generated by performing a continuous homodyne mea-
surement of the light field emanating from the hybrid
system [41]. The evolution of the system conditioned
on the measurement record is described by a stochastic
master equation [52] whose steady state can be found
numerically and even analytically in our regime of
interest, n̄M � 1 (see Ref. [49] for mathematical details).
For the fixed parameters considered above [Fig. 3],
we find in the limit of substantial entanglement that,
remarkably, the conditional steady-state entanglement
matches that of our unconditional scheme within a few-
percent margin, even when separately optimized under
the same conditions in the dynamically stable regime
(see Fig. 3, inset; supplementary details in Ref. [49]).
We thus conclude that our unconditional scheme leaves
practically no information in the output light about
the noise affecting the squeezed EPR variables. From a
practical standpoint this is beneficial as it allows optimal
performance without the need to measure the output
field nor perform the feedback required to make the
conditional entanglement unconditional. Moreover, the
dynamical cooling of the motional mode occurring in
the unconditional scheme facilitates technical stability
in the apparatus.

In conclusion, unconditional steady-state entangle-
ment in a cascaded negative-positive mass hybrid sys-
tem can be efficiently generated by engineering an asym-
metric interaction between the subsystems via the light
field connecting them. Applications for such a resource
of ready-to-use entanglement include quantum telepor-
tation [53] and key distribution [54] in hybrid quantum
networks. The scheme can compete with conditional
schemes, a fact which we speculate can be elucidated by
formally framing our unconditional scheme in terms of a
coherent-feedback master equation. The noise cancella-
tion technique inherent to the scheme enables sub-SQL
sensitivity when using the hybrid system as a continu-
ous force sensor, as will be elaborated on elsewhere [55].
Moreover, we have evidence that this sensing enhance-
ment is closely linked to the generation of EPR-type en-
tanglement studied here [49], warranting further study.
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I. HEISENBERG-LANGEVIN EQUATIONS FOR SPIN-OPTOMECHANICAL HYBRID SYSTEM

In this section, we discuss how to realize and tune the two-mode quadratic interaction [Eq. (2) in the main text] in
the specific hybrid system composed of a Cesium ensemble and an optomechanical system. The equations of motion
of the cascaded hybrid setup are derived and mapped to the generic Eqs. (4,5) presented in the main text.

A. Spin subsystem

b̂−

|4, 4〉|4, 3〉

∆S

ωS

b̂+

Figure S1. Level diagram of 133Cs ensemble polarized in the energetically maximal state (illustrated by purple circles), where
the polarization points along the applied magnetic field, and the ground state levels are split by the Larmor frequency ωS

determined by the strength of the magnetic field. The atomic ensemble is driven by an off-resonant, linearly polarized laser
beam (solid lines), which is far-detuned from the atomic resonance (detuning ∆S). The scattering sidebands (dotted arrows)
induced by the drive light are described by field operators b̂±.

We consider a free-space ensemble of 133Cs atoms driven by strong off-resonant laser light. As illustrated in
Figure S1, for an appropriate collective spin degree of freedom of the ensemble, the required oscillator with negative
mass can be achieved by initially pumping the atoms into the state |F = 4,m = 4〉, where an applied uniform magnetic
field defines the quantization axis. The magnitude of the magnetic field can be used to tune the Larmor frequency ωS
of the collective spin precession [Fig. S1]. Since energy must be extracted from this system to “excite” it from its initial
state, it acts approximately as a bosonic oscillator with negative mass as can be seen from the Holstein-Primakoff
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† E-mail: qiongyihe@pku.edu.cn
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transformation [S1, S2], provided that the system remains close to the fully polarized state. The negative mass
property can conveniently be captured by letting the effective resonance frequency of the dimensionless bosonic spin
operator be negative; this frequency is defined as ΩS ≡ sgn(mS)ωS in the discussion below Eq. (1) in the main text. We
introduce the position-dependent atomic excitation mode in the frame rotating at the effective resonance frequency
ΩS as âS(z, t) = 1

n

√
NA
L eiΩSt

∑n
i=1 |F = 4,m = 4〉i 〈F = 4,m = 3| with [âS(z, t), â†S(z′, t)] = δ(z − z′), describing an

annihilation of the atomic excitation in an atomic slice around a given z, where n is the number of atoms per unit
length, NA is the total number of atoms, and L is the length of the ensemble. The effective interaction Hamiltonian
describing the coupling of the collective spin to the light field in the rotating wave approximation can be derived as
(~ = 1) [S2]

ĤS,int = − 1√
L

∫ L

0

dz[gSBb̂−(z, t)â†S(z, t) + gSPb̂+(z, t)âS(z, t) + H.c.], (S1)

where b̂+ = (2π)−1/2e−iΩSt
∫∞

0
b̂(Ω)e−iΩtdΩ, b̂− = (2π)−1/2eiΩSt

∫ 0

−∞ b̂(Ω)e−iΩtdΩ are the slowly varying annihilation
operators of the sideband fields with [b̂±(z, t), b̂†±(z, t′)] = δ(t− t′). The coupling constants gSB/P are determined by
evaluating the appropriate Clebsch-Gordan coefficients, which can be tuned by ∆S [S3, S4]. Without loss of generality,
in the following we assume gSB/P to be real numbers.

As the light travels through the ensemble fast compared to the characteristic evolution time of the atomic state
(τ � L/c), we can introduce the spatially averaged atomic annihilation operator âS(t) = 1√

L

∫ L
0
dzâS(z, t) with

[âS, â
†
S] = 1 and derive the equation of motion [S5]

d

dt
âS(t) = −γS

2
âS +

√
γS,0âS,in + i(gSBb̂−,in + gSPb̂

†
+,in), (S2)

where b̂±,in(t) = b̂±(0, t) with vacuum expectation value 〈b̂±,in(t)b̂†±,in(t′)〉 = δ(t − t′). Eq. (S2) is seen to have the
same form as in Eqs. (4,5) of the main text. The damping rate of the spin oscillator is γS = γS,0 + g2

SB − g2
SP, where

γS,0 = γS,i + γS,p is the damping rate in absence of dynamical broadening, composed of the intrinsic damping rate
γS,i due to decoherence processes like atomic collisions and imperfect optical pumping, and the power broadening
γS,p due to the drive-induced spontaneous emission of the atoms. These decoherence processes are accounted for by
the thermal expectation value 〈âS,in(t)â†S,in(t′)〉 = (n̄S + 1)δ(t− t′) with n̄S being the corresponding effective thermal
occupation number. The total decoherence rate due to spontaneous emission and intrinsic damping can then be
defined as γ̃S,0 := γS,0(n̄S + 1

2 ) = γS,i(n̄S,i + 1
2 ) + 1

2γS,p, where in the last expression we have decomposed it according
to the contributions to γS,0.

The corresponding input-output relations of the optical modes are given as

b̂+S,out(t) = b̂+,in(t) + igSPâ
†
S(t),

b̂−S,out(t) = b̂−,in(t) + igSBâS(t), (S3)

where the output from the spin subsystem is b̂±,S,out(t) := b̂±(L, t), which will serve as the input field to the optome-
chanical system below.

To make connection to the quantities used in the main text, we introduce the coupling rates of the atomic mode
into the two sidebands ΓSB/P to reexpress the coupling constants as gSB/P =

√
ΓSB/P. The effective atomic quantum

cooperativity is defined as CS := ΓS/γ̃S,0, which is the ratio of coupling rate ΓS := ΓSB + ΓSP to the decoherence rate
γ̃S,0 for the spin system.

B. Optomechanical subsystem

Considering a driven optical cavity coupled by radiation pressure to a mechanical oscillator (see Fig. S2), the
Hamiltonian in a frame rotating at the laser frequency ωL is given by [S6]

ĤOM = ∆b̂†cb̂c + ΩMâ
†
MoâMo − g0b̂

†
cb̂c(â

†
Mo + âMo) + Ĥdiss, (S4)

where ∆ := ωc − ωL is the drive detuning, ωc/ΩM is the cavity/mechanical resonance frequency, g0 is a suitable
single-photon coupling constant, and Ĥdiss accounts for the mechanical coupling to its thermal bath and the optical
cavity coupling to external fields. The bosonic annihilation operators for the optical cavity and mechanical modes
in the lab frame are b̂o and âMo, respectively, whereas b̂c = eiωLtb̂o is the slowly varying cavity operator relative to
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ωc ΩM

ωL

X̂M

b̂±M,in

Drive laser

Cavity

b̂±M,out
(a)

(b)ωc

ωL

ωL -ΩM
ωL +ΩM

κ

Ω

Cavity response

Figure S2. (a) Standard optomechanical setup consisting of a single-sided Fabry-Pérot cavity (steady-state resonance frequency
ωc) with one moving mirror (position coordinate X̂M ∝ (â†Mo + âMo)). A classical drive laser of frequency ωL (thick arrow)
enhances the linear optomechanical interaction, resulting in the Stokes (ωL − ΩM) and anti-Stokes (ωL + ΩM) scattering into
sidebands depicted in (b) (red and blue lines, respectively). The relative sideband strengths are determined by the Lorentzian
function with cavity decay rate κ. The upper/lower sidebands are mapped onto the traveling fields b̂±M,in/out (thin arrows in
(a)) that drive (in) and readout (out) the mechanical mode.

ωL. For a large, classical drive amplitude βin, we may linearize Eq. (S4) according to the standard procedure [S6],
permitting us to consider the fluctuations δb̂c and δâMo around the resulting steady state (the ‘δ’ will be dropped
below for simplicity of notation, and static shifts of ωc, ∆, and ΩM are absorbed by suitable redefinition of these
quantities). The effective equation of motion for the optical cavity mode after linearization has the solution in the
frequency domain

b̂c(Ω) =
L(Ω)

κ/2
[igom(âMo(Ω) + â†Mo(−Ω)) +

√
κb̂M,in(Ω)], (S5)

where L(Ω) = κ/2
κ/2+i(∆−Ω) is the complex cavity Lorentzian, b̂M,in(Ω) is the input field, κ is the decay rate (FWHM)

of the optical cavity, and gom =
√
κg0βin/

√
(κ/2)2 + ∆2 is the drive-enhanced coupling constant (in the following, we

consider gom to be a real number without loss of generality).
Assuming γM � κ, we proceed by adiabatically eliminating the intracavity field (S5). This amounts to approxi-

mating

L(Ω) ≈ L(Ω̃M) for Ω > 0,

L(Ω) ≈ L(−Ω̃M) for Ω < 0, (S6)

where Ω̃M = 2g2
omIm[L(Ω̃M) − L∗(−Ω̃M)]/κ + ΩM is the dynamically shifted mechanical resonance frequency. By

defining slowly varying operators for the intracavity and external optical fields

b̂±,cav(t) =
1√
2π

{
eiΩ̃Mt

∫∞
0
b̂c(Ω)e−iΩtdΩ

e−iΩ̃Mt
∫ 0

−∞ b̂c(Ω)e−iΩtdΩ
,

b̂±M,out/in(t) =
1√
2π

{
eiΩ̃Mt

∫∞
0
b̂M,out/in(Ω)e−iΩtdΩ

e−iΩ̃Mt
∫ 0

−∞ b̂M,out/in(Ω)e−iΩtdΩ
, (S7)

and the mechanical mode âM = eiΩ̃MtâMo with [âM, â
†
M] = 1, the mechanical equation of motion is [S5, S6]

d

dt
âM(t) = −γM

2
âM +

√
γM,0âM,in + i

2gom√
κ

[L(Ω̃M)b̂+M,in + L∗(−Ω̃M)b̂†−M,in], (S8)

where γM = γM,0 + 4g2
omRe[L(Ω̃M) − L∗(−Ω̃M)]/κ, composed of the intrinsic damping rate γM,0 and the optical

broadening. We will use the thermal expectation value 〈âM,in(t)â†M,in(t′)〉 = (n̄M + 1)δ(t − t′) with n̄M being the
thermal occupation number of the environment, which corresponds to the thermal decoherence rate of the mechanical
oscillator γ̃M,0 := γM,0(n̄M + 1/2) ≈ γM,0n̄M in the limit of large thermal occupation number n̄M � 1. In addition,
we have assumed a high-Q mechanical oscillator, in the sense that Q = Ω̃M/γM � 1, so that the response of âM(Ω)

is confined to Fourier frequencies Ω ≈ Ω̃M.
To make connection to the main text, we introduce sideband rates ΓMB/P which are related to the coupling constants

as gMB/P = 2gomL(±Ω̃M)/
√
κ =

√
ΓMB/Pe

iθ± and the phase of the upper/lower sideband θ± = − arctan(2(∆ ∓
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Ω̃M)/κ). We define the mechanical quantum cooperativity as CM := ΓM/γ̃M,0, where ΓM := ΓMB + ΓMP is the
coupling rate. As defined here, the quantum cooperativity CM contains Lorentzian penalty factors via ΓM accounting
for the off-resonant readout from the optical cavity. This reflects the difference in readout rates resulting when
changing the drive detuning while keeping the drive-induced intracavity population fixed.

The effective input-output relations of the optomechanical system with the cavity mode adiabatically eliminated
are given as

b̂+M,out(t) = −b̂+M,in(t)e2iθ+ − igMBâM(t),

b̂−M,out(t) = −b̂−M,in(t)e2iθ− − igMPâ
†
M(t). (S9)

C. Cascaded hybrid setup

Having established the theoretical description of the individual subsystems, we arrive at the equations governing
the cascaded hybrid system by setting b̂±M,in = eiφ

√
1− εb̂±S,out +

√
εb̂′±,in. Here φ is a quadrature rotation phase

factor between the two subsystems (as can be chosen experimentally by adjusting the relative phase between the spin
and optomechanical drive fields [S7]), and b̂′±,in is the additional vacuum noise field due to the transmission loss ε
between the two subsystems. Specializing to the case of |ΩS| = Ω̃M, the equations of motion for the cascaded setup
are given by

d

dt
âS(t) = −γS

2
âS +

√
γS,0âS,in + i(

√
ΓSBb̂−,in +

√
ΓSPb̂

†
+,in),

d

dt
âM(t) = −γM

2
âM +

√
γM,0âM,in +

√
1− εR0â

†
S + i

√
1− ε(

√
ΓMBe

i(θ++φ)b̂+,in +
√

ΓMPe
−i(θ−+φ)b̂†−,in)

+i
√
ε(
√

ΓMBe
iθ+ b̂′+,in +

√
ΓMPe

−iθ− b̂′†−,in), (S10)

where R0 =
√

ΓSBΓMPe
−i(θ−+φ) −√ΓMBΓSPe

i(θ++φ) is determined by the difference of the light field coupling with
spin and mechanical oscillators.

By numerical optimization of ξg [Eq. (8) in the main text], we find the optimal choice to be φ = −(θ+ + θ−)/2 so
that R0 = exp(i(θ+− θ−)/2)(

√
ΓSBΓMP−

√
ΓMBΓSP) := exp(i(θ+− θ−)/2)R, where R is real with units of frequency.

By defining b̂′′±,in ≡ b̂′±,inei(θ++θ−)/2, the equations of motion can then be rewritten as

d

dt
âS(t) = −γS

2
âS +

√
γS,0âS,in + i(

√
ΓSBb̂−,in +

√
ΓSPb̂

†
+,in),

d

dt
â′M(t) = −γM

2
â′M +

√
γM,0â

′
M,in +

√
1− εRâ†S + i

√
1− ε(

√
ΓMBb̂+,in +

√
ΓMPb̂

†
−,in)

+i
√
ε(
√

ΓMBb̂
′′
+,in +

√
ΓMPb̂

′′†
−,in), (S11)

where an immaterial phase factor has been absorbed by introducing â′M/M,in(t) := e−i(θ+−θ−)/2âM/M,in(t). Equa-
tions (S11) correspond to Eq. (4,5) in the main text.

In the present work, we focus on optimizing the entanglement ξg of the particular EPR-type variables that are
automatically mapped into the joint output of the hybrid system by the entangling dynamics (thereby fixing the
parameter g to be considered). To identify these EPR-type variables, we now derive the input/output relation in the
frequency domain for the two-mode (homodyne) light quadrature operators

X̂L,in/out(Ω) =
1√
2

[b̂in/out(Ω) + b̂†in/out(−Ω)] =
1√
2

[X̂cos
L,in/out(Ω) + iX̂sin

L,in/out(Ω)],

P̂L,in/out(Ω) =
1√
2i

[b̂in/out(Ω)− b̂†in/out(−Ω)] =
1√
2

[P̂ cos
L,in/out(Ω) + iP̂ sin

L,in/out(Ω)], (S12)

where [b̂in,out(Ω), b̂†in,out(Ω
′)] = δ(Ω − Ω′), X̂/P̂ cos / sin

L,in/out are the cosine and sine components of the input/output light

quadrature operators X̂/P̂L,in/out, and X̂/P̂L,out(−Ω) = X̂/P̂ †L,out(Ω). Using the Fourier transform convention

â(t) =
1√
2π

∫ ∞

−∞
â(Ω)e−iΩtdΩ, â†(t) =

1√
2π

∫ ∞

−∞
â†(Ω)eiΩtdΩ, (S13)
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and defining b̂±,out ≡ b̂±M,oute
−i[2θ±−(θ++θ−)/2+π], the phase-independent input/output relations in the frequency

domain can be derived by plugging the Fourier transforms of Eqs. (S3,S9) into Eq. (S12) and found to be (in the lab
frame)

X̂cos
L,out(Ω) =

√
1− εX̂cos

L,in(Ω) +
√
εX̂cos′

in (Ω)−
√

1− ε(√ΓSB −
√

ΓSP)√
2

P̂S(Ω)−
√

ΓMB −
√

ΓMP√
2

P̂M(Ω),

X̂sin
L,out(Ω) =

√
1− εX̂sin

L,in(Ω) +
√
εX̂sin′

in (Ω)−
√

1− ε(√ΓSB −
√

ΓSP)√
2

X̂S(Ω) +

√
ΓMB −

√
ΓMP√

2
X̂M(Ω),

P̂ cos
L,out(Ω) =

√
1− εP̂ cos

L,in(Ω) +
√
εP̂ cos′

in (Ω) +

√
1− ε(√ΓSB +

√
ΓSP)√

2
X̂S(Ω) +

√
ΓMB +

√
ΓMP√

2
X̂M(Ω),

P̂ sin
L,out(Ω) =

√
1− εP̂ sin

L,in(Ω) +
√
εP̂ sin′

in (Ω)−
√

1− ε(√ΓSB +
√

ΓSP)√
2

P̂S(Ω) +

√
ΓMB +

√
ΓMP√

2
P̂M(Ω), (S14)

where Ω > 0, and X̂S/M(Ω) = (âS/M(Ω)+â†S/M(Ω))/
√

2, P̂S/M(Ω) = (âS/M(Ω)−â†S/M(Ω))/(
√

2i) are the spin/mechanical
quadrature operators in the lab frame. The joint input-output relations (S14) establish the EPR variables mapped
into the output field, specifically that (X̂S + gX̂M, −P̂S + gP̂M) with g = (

√
ΓMB +

√
ΓMP)/[

√
1− ε(√ΓSB +

√
ΓSP)]

are mapped to P̂ cos / sin
L,out , as stated in the main text.

II. STOCHASTIC MASTER EQUATION FOR CONDITIONAL ENTANGLEMENT GENERATION

In this section, we introduce the standard mathematical theory necessary to describe a quantum system subject
to continuous measurement, the Stochastic Master Equation (SME) [S8]. In particular, this theory prescribes how
the information gained by measurement should be used to update the (conditional) density matrix, which encodes
the experimenter’s knowledge of the state of the quantum system. We apply the SME to calculate the entanglement
performance of dynamically stable conditional schemes. This serves as an important benchmark for our novel un-
conditional scheme; the results of this comparison are summarized in the main text, whereas additional details are
given below in Subsection III B. Incidentally, as also discussed in Subsection III B, the conditional theory provides a
shortcut to determining the scaling of our unconditional scheme.

The conditional state evolves according to the conditional stochastic master equation. A general form with b decay
channels and c monitored channels (c ≤ b) is given by [S8, S9]

dρ̂ = −i
[
Ĥ, ρ̂

]
dt+

b∑

i=1

D
[
Ĵi

]
ρ̂dt+

c∑

i=1

H
[
Ĵi

]
ρ̂dWi, (S15)

Ii(t)dt = 〈Ĵi + Ĵ†i 〉dt+ dWi, (S16)

where the Lindblad operator D[Ĵi]ρ = Ĵiρ̂Ĵ
†
i − 1

2 Ĵ
†
i Ĵiρ̂− 1

2 ρ̂Ĵ
†
i Ĵi describes the system decoherence due to the coupling

to the environment, and the operator H[Ĵi]ρ̂ = (Ĵi − 〈Ĵi〉)ρ̂ + ρ̂(Ĵ†i − 〈Ĵ†i 〉) updates the density matrix conditioned
on the observation of the homodyne photocurrent Ii(t). The measurement terms proportional to dWi, a Wiener
increment of zero mean and dWidWj = δijdt.

Considering our hybrid setup and subjecting the outgoing field to homodyne detection, the corresponding conditional
master equation is given by [S10]

dρ̂ = [γS,0(n̄S + 1)]D[âS]ρ̂dt+ [γS,0n̄S]D[â†S]ρ̂dt+ [γM,0(n̄M + 1)]D[âM]ρ̂dt+ [γM,0n̄M]D[â†M]ρ̂dt

−
√

1− εR
2

[âSâM − â†Sâ
†
M, ρ̂]dt+D[

√
εΓSBâS]ρ̂dt+D[

√
εΓSPâ

†
S]ρ̂dt+D[ŝ+]ρ̂dt+D[ŝ−]ρ̂dt

+H
[
eiψ (ŝ+ + ŝ−) /

√
2
]
ρ̂dWc +H

[
−ieiψ (ŝ+ − ŝ−) /

√
2
]
ρ̂dWs, (S17)

where dWc and dWs correspond to the cosine and sine components of the Wiener increments, the jump operators are
defined as

ŝ+ =
√

(1− ε)ΓSPâ
†
S +

√
ΓMBâM

ŝ− =
√

(1− ε)ΓSBâS +
√

ΓMPâ
†
M, (S18)

and we choose the optimal detection phase ψ = 0 for further calculation.
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The conditional dynamics described by Eq. (S17) in the long run reduces to Gaussian dynamics [S11], described by
the (deterministic) Riccati equation for the second moments of the operators, and a stochastic equation for the first
moments. These equations can be established by recognizing that Eq. (S17) has the form Eq. (S15) for suitable Ĥ,Ĵi
and applying the procedure given in Ref. [S12], permitting us to efficiently solve for the steady state.

According to the global numerical minimization of the corresponding Riccati equation (in the dynamically stable
regime), the optimal choice is θS ≈ π/4. The minimum of the EPR variance can be achieved for arbitrary θM by
choosing the corresponding optimal CM for fixed θS and CS. In the following, we consider the analytical solution for
θS/M = π/4 and determine the optimal CM and the resulting minimized EPR variance.

For θS = θM = π/4, the Riccati equation reads

d

dt
∆2X̂S = −γS,0

2
∆2X̂S +

ΓS

2
+ γ̃S,0 − (2

√
(1− ε)ΓS∆2X̂S +

√
ΓM〈X̂S, X̂M〉)2,

d

dt
∆2X̂M = −γM,0

2
∆2X̂M +

ΓM

2
+ γ̃M,0 − (

√
(1− ε)ΓS〈X̂S, X̂M〉+ 2

√
ΓM∆2X̂M)2,

d

dt
〈X̂S, X̂M〉 = −(2

√
(1− ε)ΓS∆2X̂S +

√
ΓM〈X̂S, X̂M〉)(

√
(1− ε)ΓS〈X̂S, X̂M〉+ 2

√
ΓM∆2X̂M)

−γS,0 + γM,0

2
〈X̂S, X̂M〉 −

√
(1− ε)ΓSΓM. (S19)

In the hot motional bath limit (n̄M � 1), we have −γM,0
2 ∆2X̂M + γ̃M,0 ≈ γ̃M,0, and the analytical solutions of this

equation for the steady-state are

∆2X̂S = −
√
CM/(CM + 2)/2− [(

√
CMr + 1/((2nS + 1)

√
(CM + 2)r))/(2

√
CS(1− ε))]〈X̂S, X̂M〉,

∆2X̂M = (nS + 1/2)

√
(CM + 2) · (

√
CM(CM + 2)r + 1/(2nS + 1))2/CM + (1− ε)CS(CS − 2CMr + 2)

−(nS + 1/2)[CMr + 2r − (1− ε)CS],

〈X̂S, X̂M〉 =
√
CMr(

√
(CM + 2)/CM − 2∆2X̂M)/

√
CS(1− ε), (S20)

where r = γ̃M,0/γ̃S,0 is the ratio of decoherence rates. Equation (S20) will be used to analyze the asymptotic behavior
of the conditional case in the large spin cooperativity limit (CS � 1) below.

III. STEADY-STATE ENTANGLEMENT OPTIMIZATION IN SPIN-OPTOMECHANICAL SYSTEM

In this section, we compare the steady-state entanglement performances of unconditional and conditional schemes
by global numerical optimization of the imbalanced EPR variance ξg. Furthermore, the asymptotic scaling functions
of the optimized ξg are derived in the limit of large spin cooperativity.
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100
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Figure S3. Optimal (a) coupling angles θj and (b) mechanical cooperativity CM required to achieve the minimal EPR variance
ξg for the cases of symmetric (θ := θS = θM, blue) and asymmetric (red) coupling. The follow fixed parameters are assumed:
transmission loss ε = 0.1, intrinsic linewidths γS,0 = 2π×5KHz, γM,0 = 2π×0.1Hz, and thermal occupancies n̄S = 1, n̄M = 105.

We now look at the details behind Fig. 3 in the main text. Corresponding to the minimized ξg for unconditional
entanglement generation, as illustrated in Fig. S3(a), the optimal interaction when allowing asymmetric coupling
(θS 6= θM) shows θS ≈ π/4 in the regime of substantial entanglement (for smaller values of CS, dynamical anti-
broadening of the spin mode by tuning θS < π/4 is seen to be optimal). When comparing with the symmetric
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coupling (θS = θM = θ), i.e., the two oscillators are driven only by the common optical vacuum bath (R = 0), θM > θ
shows that the optimal asymmetric coupling requires more beam-splitter interaction for the mechanical subsystem. In
addition, optimal CM is larger for the asymmetric coupling when considering the values of CS permitting entanglement
for both R = 0 and R 6= 0 as shown in Fig. S3(b).

A. Asymptotic scaling for symmetric unconditional entanglement

For quantitative comparison between the schemes below, we now derive the asymptotic scaling function in the limit
of large CS. For the unconditional case of symmetric coupling (R = 0), the expression for ξg is given by plugging
Eq. (7) into Eq. (8) in the main text; for θ 6= π/4 and in the limit of large CS (i.e, γS/M � γS/M,0) we find,

ξg ≈ −
1

cos 2θ

[
1 +

2(1− ε+ r)

CS(1− ε) + CMr

]
+ tan 2θ

4CMCSr(1− ε)
(CMr + CS(1− ε))(CMr + CS)

, (S21)

for given transmission loss ε and decoherence rates γ̃j,0 (j ∈ {S,M}). Minimizing Eq. (S21) and Taylor expanding in
the limit of large CS, we find the optimal mechanical cooperativity CM,opt ≈

√
1− εCS/r, and the optimal coupling

angle

sin 2θopt ≈
4(1− ε)

(
√

1− ε+ 1)2

(
1− 2(

√
1− ε+ r)√
1− ε+ 1

1

CS

)
. (S22)

Plugging the optimized CM,opt and θopt back into Eq. (S21), the leading contribution in the limit of large CS is

ξg ≈
√

2(1 + r)/CS, (S23)

when ε = 0. In the presence of transmission loss ε 6= 0, the entanglement is lower-bounded by ξg ≥
√
ε(1 + ε

16 + ...).

B. Comparison between asymmetric unconditional and conditional schemes

Next we compare the entanglement performance of the asymmetric unconditional scheme with that of the condi-
tional scheme. The difference between the optimized unconditional entanglement and the conditional entanglement
achievable by adding a continuous measurement of the output field while keeping all parameters the same is within a
few percent [inset of Fig. 3 in the main text, red dashed curve]. We also consider the optimized conditional steady-
state entanglement using QND interaction (θM = θM = π/4) and optimized mechanical cooperativity CM by means of
the analytical solution shown in Eq. (S20). Comparing again to the (separately) optimized unconditional scheme, we
again find that they match within a few percent [inset of Fig. 3 in the main text, red solid curve], while the required
optimal CM in the unconditional case is larger than that of the conditional QND case [Fig. S4]. In addition, the
relative entanglement improvement of the conditional scheme over the unconditional scheme (referenced to the latter)
and the difference between the required optimal CM for the two schemes approach zero as CS increases.

uncond.

cond.(QND)

1 10 100 1000

5

10

50

100

CS

C
M

Figure S4. The optimal mechanical cooperativity CM for conditional QND and unconditional cases. The fixed parameters:
transmission loss ε = 0.1, intrinsic linewidths γS,0 = 2π×5KHz, γM,0 = 2π×0.1Hz, and thermal occupancies n̄S = 1, n̄M = 105.

The asymptotic behavior of the optimized conditional entanglement (QND interaction) can be derived in the large
spin cooperativity (CS) limit. Substituting Eq. (S20) into Eq. (8) in the main text, we minimize ξg and perform a
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Taylor expansion for large CS. The optimal mechanical cooperativity is then given by CM,opt ≈
√

1− εCS/r. By
plugging CM,opt into Eq. (S20) and Eq. (8) in the main text, the corresponding minimized conditional EPR variance
can be expanded as

ξg ≈
√

1 + r + 1/(2n̄S + 1)

2CS
, (S24)

when ε = 0. In the presence of transmission loss, a lower bound is given by ξg ≥
√
ε/(4− 3ε) in the limit of small

ε. As the optimized performances of the conditional and asymmetric unconditional schemes in the large CS limit are
essentially the same [inset of Fig. 3 in the main text, red curves], the asymptotic behavior of the conditional case can
also be applied to describe the unconditional case, and corresponds to the result stated in the main text.

IV. LINK BETWEEN UNCONDITIONAL ENTANGLEMENT AND FORCE SENSITIVITY IN
HYPOTHESIS TESTING

As stated in the final paragraph of the main text, we here present evidence that unconditional steady-state entan-
glement is linked to applying the hybrid system as a continuous CQNC force sensor, e.g., for a mechanical force acting
on the motional degree of freedom [S13–S16] or a magnetic field acting on the spin system [S17, S18]. To illustrate the
relation, we consider, for specificity, mechanical force sensing in the context of hypothesis testing, i.e., the task of deter-
mining whether a force of a prescribed waveform F (t) = A0f(t) = A0F−1{f(Ω)} is present or not on the mechanical
oscillator (here F denotes the Fourier transform, andA0 is the amplitude of the square-normalized waveform f(t)). The
output field in the presence of the external force F (t) can be decomposed as P̂L,out(t) = f̂add(t)+A0S(t), where f̂add(t)

contains the various contributions to the measurement noise of the hybrid sensor, and S(t) =
√
γM,0ΓχM(t) ∗ f(t)

is the signal of the normalized force f(t) with Γ and γM,0 being the corresponding readout and intrinsic mechanical
damping rates, and χM(t) being the inverse Fourier transform of the mechanical susceptibility, whereas ∗ denotes
convolution (detailed discussion will be given below).

By projecting the output field P̂L,out(t) onto a (real-valued) post-processing filter G(t), the estimation of the force
amplitude is given by

Âest =

∫∞
−∞G(t)P̂L,out(t)dt∫∞
−∞G(t)S(t)dt

= A0 +

∫∞
−∞G(t)f̂add(t)dt
∫∞
−∞G(t)S(t)dt

. (S25)

The variance of the (zero-mean) noise term on the right-hand side of Eq. (S25) determines the ability to resolve the
presence (or absence) of the prescribed signal on top of the noise, i.e., the sensitivity. It can be calculated in the Fourier
domain in terms of the symmetrized noise spectral density N(Ω), defined via 〈f̂†add(Ω)f̂add(Ω′)〉+〈f̂add(Ω)f̂†add(Ω′)〉 :=
2N(Ω)δ(Ω− Ω′) [S19], as,

V = 〈(Âest −A0)†(Âest −A0)〉 =

∫∞
−∞ dΩ

∫∞
−∞ dΩ′G(Ω)G∗(Ω′)〈f̂†add(Ω)f̂add(Ω′)〉

(
∫∞
−∞G∗(Ω)S(Ω)dΩ)2

=

∫∞
−∞ dΩ|G(Ω)|2N(Ω)

(
∫∞
−∞G∗(Ω)S(Ω)dΩ)2

; (S26)

the symmetrized spectrum enters due to the evenness of |G(Ω)|2 (which follows from G(−Ω) = G∗(Ω)). Applying the
matched filter function G(Ω) = S(Ω)/N(Ω) to extract the signal from the measurement record optimally [S20], the
sensitivity (S26) equals

V =

[∫ ∞

−∞

|S(Ω)|2
N(Ω)

dΩ

]−1

. (S27)

Considering our hybrid system (S11) in the lab frame, the equations of motion in the frequency domain after
adiabatic elimination of the optomechanical cavity are (using the convention Eq. (S13))

−iΩâM(Ω) = −iΩ̃MâM(Ω)− γM

2
âM(Ω) +

√
γM,0[âM,in(Ω) +A0f(Ω)] + i[

√
ΓMBb̂M,in(Ω) +

√
ΓMPb̂

†
M,in(−Ω)],

−iΩâS(Ω) = −iΩSâS(Ω)− γS

2
âS(Ω) +

√
γS,0âS,in(Ω) + i[

√
ΓSBb̂in(Ω) +

√
ΓSPb̂

†
in(−Ω)], (S28)

where we will again assume ΩS = −Ω̃M < 0 (in terms of the effective resonance frequencies introduced in Section IA)
and we have now included the external mechanical force f(Ω). Assuming that the system response is concentrated
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Figure S5. Minimized unconditional EPR-variance ξg (dashed) and the resulting sensitivity enhancement of the hybrid system
compared with the SQL for mechanics-only sensing VH/VM (solid) as a function of spin quantum cooperativity CS for fixed
parameters γS,0 = 2π × 5kHz, n̄S = 1, γM,0n̄M = 2π × 10kHz, and ε = 0.

spectrally around its resonant frequency (|ΩS| � γS, Ω̃M � γM), the input-output relation for the hybrid system is
given by (in absence of transmission loss, ε = 0)

P̂L,out(Ω) = P̂L,in(Ω) +

√
ΓSB +

√
ΓSP√

2
â†S(−Ω) +

√
ΓMB +

√
ΓMP√

2
[âM(Ω) +

√
γM,0χM(Ω)A0f(Ω)], (S29)

when Ω > 0, and P̂L,out(−Ω) = P̂ †L,out(Ω). Here χM(Ω) = 1/[γM/2 + i(Ω̃M −Ω)] is the mechanical susceptibility. The
signals of the forces that can be read from Eq. (S29) are

S(Ω) = (
√

ΓMB +
√

ΓMP)
√
γM,0χM(Ω)f(Ω)/

√
2,

f̂add(Ω) = P̂L,out(Ω)− S(Ω). (S30)

To illustrate the relation between entanglement and sensitivity performance, we consider the example of a force
signal with a Lorentzian spectrum centered at the mechanical resonance f(Ω) =

√
γsig/[(γsig/2 + i(Ω̃M − Ω))], and∫∞

−∞ |f(Ω)|2dΩ = 4π for Ω̃M � γsig. We will benchmark the sensing enhancement provided by the hybrid system
against the standard quantum limit (SQL) VM, which is the minimal sensitivity (S27) achievable in absence of the
spin system (ΓSB/P = 0) when optimizing over the mechanical parameters CM, θM for fixed decoherence rate γ̃M,0 and
signal bandwidth γsig. In order to link with entanglement, we use the parameters CM and θS/M given by optimizing
the EPR variance ξg for fixed decoherence rate γ̃S/M,0 and signal bandwidth γsig to evaluate the sensitivity of the
hybrid system VH using Eqs. (S27–S30). To the end of evaluating VM/H, we note that for the mechanical mode alone,
the added symmetrized noise spectrum is found from Eqs. (S28–S30) to be

NM(Ω) =
1

2
+ (|χM(Ω)|2 + |χM(−Ω)|2)

[
(
√

ΓMB +
√

ΓMP)2

2
(
ΓMB + ΓMP

2
+ γ̃M,0)− γM(γM − γM,0)

4

]
(S31)

whereas for the the hybrid system, we find

NH(Ω) =
1

2
+ h1(|χS(Ω)|2 + |χS(−Ω)|2) + h2(|χM(Ω)|2 + |χM(−Ω)|2) + h3(|χM(Ω)|2|χS(−Ω)|2 + |χM(−Ω)|2|χS(Ω)|2)

+h4(|χM(Ω)|2|χS(−Ω)|2(Ω− Ω̃M)2 + |χM(−Ω)|2|χS(Ω)|2(Ω + Ω̃M)2) (S32)
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where the coefficients are given by

h1 =
(
√

ΓSB +
√

ΓSP)2

2
(
ΓSB + ΓSP

2
+ γ̃S,0)− γS(γS − γS,0)

4
,

h2 =
(
√

ΓMB +
√

ΓMP)2

2
(
ΓMB + ΓMP

2
+ γ̃M,0)− γM(γM − γM,0)

4
,

h3 =
γM(
√

ΓSB +
√

ΓSP)(
√

ΓMB +
√

ΓMP)

2
[R(

ΓSB + ΓSP

2
+ γ̃S,0)− γS(

√
ΓSBΓMP +

√
ΓSPΓMB)

4
]

+
R(
√

ΓMB +
√

ΓMP)2

2
[R(

ΓSB + ΓSP

2
+ γ̃S,0)− γS(

√
ΓSBΓMP +

√
ΓSPΓMB)

2
]

−RγSγM(
√

ΓSB −
√

ΓSP)(
√

ΓMB +
√

ΓMP)

8

h4 = −(
√

ΓSB +
√

ΓSP)(
√

ΓMB +
√

ΓMP)

√
ΓSBΓMP +

√
ΓSPΓMB

2
+R

(
√

ΓSB −
√

ΓSP)(
√

ΓMB +
√

ΓMP)

2
, (S33)

and R =
√

ΓSBΓMP −
√

ΓSPΓMB as above.
We plot the sensing enhancement VH/VM alongside the corresponding unconditional EPR variance ξg in Fig. S5.

Here it is seen that the improvement in unconditional entanglement with increasing spin cooperativity CS goes hand
in hand with sub-SQL sensing enhancement for broadband force signals Ω̃M � γsig � γ̃M,0. This is evidence that
there is a link between unconditional entanglement generation and sub-standard quantum limit (SQL) sensitivity
when applying the hybrid system as a continuous force sensor.
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