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A Brief Introduction to Cortical Representations of
Objects

Guy Wallis & Heinrich B̈ulthoff

Abstract. To understand how objects are recognized and represented in the human brain is still one of the ultimate
goals of cognitive science. In this article, we will collect evidence from mainly neurophysiological studies which
suggest that object recognition is achieved by hierarchical processing in the brain and that the representation of
objects is distributed and view-based. Furthermore, these studies propose that the temporal coherence of the visual
input plays a fundamental role in the learning of object representations.

1 Introduction

As viewing distance, viewing angle or lighting condi-
tions change, so too does the image of an object which
we see. Despite the seemingly endless variety of im-
ages that objects can project, the human visual sys-
tem remains able to rapidly and reliably identify them
across huge changes in appearance. Understanding
how humans achieve this feat of recognition has long
been a source of debate. Despite a concerted effort, re-
searchers are still undecided even about the most fun-
damental questions of how objects are represented in
cortex. This article gives a brief overview of some
theoretical approaches in the context of mainly neu-
rophysiological evidence. It also considers the related
question of objects within a physical context, that is the
analysis of visual scenes. Scene analysis is relevant to
the question of object recognition because scenes are
initially recognised at a holistic, object-like level, pro-
viding a context or ‘gist’ which itself influences the
speed and accuracy of recognition of the constituent
objects (Rensink, 2000). A precise characterisation
of gist remains elusive, but it may well include infor-
mation such as global color patterns, spatial frequency
content, correlational structure, anything which is use-
ful for categorising or recognising the scene.

To provide an anatomical framework it is instructive
to review the major functional divisions of visual cor-
tex. Visual processing begins in the hinter most part
of neocortex, in the occipital lobe. From there, in-
formation flows down into the temporal lobe, forming
the ventral stream; and up into the parietal lobe, form-
ing the dorsal stream - see figure 1. On the basis of
the neuropsychological and single cell recording data,
theorists proposed a functional division between these
streams. The dorsal stream was likened to the task of
deciding ‘where’ an object is, and the ventral stream
‘what’ an object is (Ungerleider & Haxby, 1994). In

this review we mainly focus on the ‘what’ stream,
since it is seen as the centre of object recognition, but
as later comments will reveal, an integrated model of
scene perception will almost certainly require a wider
reaching approach encompassing all four lobes.

2 The ventral stream

The path from primary visual cortex to the inferior
temporal lobe (IT) passes through as many as ten neu-
ral areas before reaching the last wholly visual areas
- see figure 1. Early recordings in the temporal lobe
reported neurons selective for faces, and later record-
ings were able to verify that these cells could not be
excited by simple visual stimuli, nor as the result of
an emotional response to seeing a particular face - see
(Logothetis & Sheinberg, 1996; Rolls, 1992).

One striking feature of the reponse properties of
neurons in IT that the further down the ventral stream
one looks, the more specialised and selective the neu-
rons become. Of especial interest to the field of ob-
ject recognition was the discovery that along with in-
creasing selectivity, many neurons became tolerant to
shifts in stimulus position, changes in viewing angle,
size/depth or illumination, or the spatial frequencies
present in the image - see (Rolls, 1992).

A great deal of this work originally had to do with
neurons selective for faces, but although face cells ac-
count for as much as 20% of neurons in some regions
of IT and STS, they only account for around 5% of
all cells present in inferior temporal cortex. In the
early 1990s, Tanaka and his colleagues (Tanaka, Saito,
Fukada, & Moriya, 1991) showed that many of the re-
maining neurons are selective for complex combina-
tions of features, including a basic shape with bounded
light, shaded or colored bounded regions, and that
these neurons also demonstrate useful invariance prop-
erties. This work has served to dispell the idea of a
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Figure 1: Principle divisions of neocortex, including the main areas of the temporal lobe. The dark arrows indicate information
flow along the dorsal stream. The light arrow indicates flow along the ventral stream.

special stream designed specifically for face recogni-
tion.

Recent work has focused on the issue of how the
cellular response properties of temporal lobe neurons
change over time. Several studies have shown that
repeated exposure to a particular object class results
in changes in the number of neurons selective for
that stimulus - e.g. (Logothetis & Sheinberg, 1996;
Miyashita, 1993; Rolls, 1992). In humans, we should
not be surprised if a car enthusiast has neurons tuned
to the appearance of a yellow VW Beetle, or that a lep-
idopterist has ones tuned to an Orange Tip butterfly.

3 The dorsal stream

Abstracting an object’s form from its precise location,
size, or orientation is clearly important for tasks such
as recognition and categorisation. However, there are
plenty of situations in which an object’s location and
orientation are important, not least when we want to
interact with that object by picking it up or wielding
it appropriately. Processing of location and orientation
appear to be the major concern of neurons in the pari-
etal lobe. These neurons form part of the dorsal stream.
In humans, damage to the parietal lobe severely af-
fects the localisation of objects within a scene, leading
to disorders such as visual neglect, and it appears that
the dorsal stream is intrinsically linked to the control
of visual attention and eye-movements (Ungerleider &
Haxby, 1994).

Of course many tasks require the interaction of the
two types of information, both where and what an ob-
ject is. Our lepidoptorist would like to be able to net a
Tortoiseshell fluttering amongst Red Admirals. This
raises an as yet unanswered question of how these
types of information interact and where various repre-

sentations are held. It turns out that there are plenty of
routes which information could take between the tem-
poral and parietal lobes - including directly, via the oc-
cipital lobe, or via the frontal lobe. It has been shown,
for example, that later stages of IT (AIT/CIT) con-
nect to the frontal lobe, whereas earlier ones (CIT/PIT)
connect to the parietal lobe (Webster, Bachevalier, &
Ungerleider, 1994). One aim of any modelling work
must be to investigate the possible significance of these
connections.

4 A processing hierarchy

One of the striking features of the ventral stream is its
hierarchical structure. Neurons in the latter regions of
the temporal lobe can be thought of as sitting on the top
of a processing pyramid - see figure 2. Receptive field
size grows steadily larger the further up this pyramid
one looks, and the response times of neurons also rise
systematically (Rolls, 1992).

One possible explanation for the presence of such a
hierarchy is that the visual system is gradually build-
ing representations of ever increasing complexity to
produce neurons which respond to combinations of in-
puts themselves forming the effective stimuli for later
neurons. By responding to local combinations of neu-
rons co-active in the previous layer, arbitrary spatial ar-
rangements of the same features should fail to activate
the same neuron. This should then reduce the chance
of finding the trigger features supporting recognition
in random arrangements of the features, an issue often
referred to as the ‘feature binding problem’. Some of
the most selective and view-invariant responses belong
to cells in the superior temporal areas. These neurons
appear to pool the outputs of view selective AIT cells.
One unsupervised explanation as to how the STPa neu-
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Figure 2: Schematic of convergence in the ventral processing
stream. The steady growth in receptive field size suggests
that neurons in one layer of the hierarchy receive input from
a select group of neurons in the preceding layer. The time
taken for the effects of seeing a new visual stimulus increases
systematically through the hierarchy, supporting the notion
of a strictly layered structure.

rons know which AIT neurons to group together is dis-
cussed in the next section.

Neuroanatomists tell us that there are at least as
many connections running back as there are forward
in the ventral stream, and this is important when one
comes to devise models. The precise use of these con-
nections remains unclear. Some theorists have argued
that they are used in recall, and it is true that the act
of remembering visual events causes activity to spread
into primary visual areas. They may also control vi-
sual attention. Certainly attending to specific regions
of our visual environment has been shown to facilitate
the processing of signals in topographically matched
regions of visual cortex, which may well be due to se-
lectively raising activity (or lowering activation thresh-
olds) of neurons along the processing hierarchy. One
important role which the connections almost certainly
do play is in relaying ‘top-down’ influences on recog-
nition, due to expectations or selective attention, per-
haps prompted by the gist of a scene. Such influences
include contextual priors, which in this case are func-
tions that govern the likelihood of seeing a particular
object in a particular context. Our lepidoptorist will
implicitly change these priors with habitat, improving
the chances of correctly distinguishing a Caper White
in the rocky bush of South Australia from a Cabbage
White on the Meadows of Southern England.

Apart from its role in relaying attentional mecha-
nisms, some have argued that the backward project-
ing connections play an integral role in normal visual

processing. Some have gone as far as to suggest that
each neural region forms a recurrent attractor network,
each connected through the cortex up to and includ-
ing the temporal lobe. Whilst such models may be re-
quired to deal with confusing or low quality images,
there is good evidence that timing constraints prohibit
such a model from acting during the rapid recognition
of everyday, familiar objects (Thorpe, Fize, & Marlot,
1996).

5 Encoding objects in the temporal lobe

Despite the apparent selectivity of temporal lobe neu-
rons it is important to realise that they are not all-
singing, all-dancing ‘super cells’, selective for a sin-
gle entity in the manner proposed in early theories of
object representation. On the contrary, many of the
cells reported in the literature responded to several ex-
amples of objects within their particular object cate-
gory. Evidence is emerging that object encoding is
achieved via small ensembles of firing cells which both
efficiently and robustly code for individual objects.

Under a distributed scheme, many hundreds or thou-
sands of neurons - each selective for its specific feature
- would act together to represent an object. Although
many of these features represent only small regions of
an object, others appear to represent an object’s out-
line, or some other global but general property. In
addition, the neural representation of these features is
more sophisticated than a simple template, since they
may exhibit invariance to scale and size, something
typical of temporal lobe neurons.

Implementing representation in a distributed code
brings with it several advantages. First, the represen-
tations are robust to cell damage: Since hundreds or
thousands of neurons react to the presence of a single
object, the death of one neuron within the ensemble
will not adversely affect recognition accuracy or speed.
Second, a distributed representation provides immedi-
ate recognition generalisation to novel stimuli: A new
object can be represented distinctly from all other stim-
uli by using a unique combination of the many, well
established feature selective neurons already present.
In so doing, each neuron brings knowledge of how its
feature changes in appearance with changes in view-
point. The numerous beneficial, emergent properties
of a distributed representation have long been realized
by neural network theorists - see (Deneve, Latham, &
Pouget, 2001).

In addition to the general encoding and topological
organisation of IT cortex, work has also been carried
out to establish what functional organisation might be
present. Some researchers have made moves to de-
scribe the functional organisation of IT. Cells were
tested and their key stimulating features characterised,
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revealing a columnar structure in which groups of neu-
rons appear to respond to similar, though subtly dif-
ferent collections of features. Neighbouring columns
seem to bear less in common. This in part reflects the
findings of other researchers who have described lo-
calised ‘clusters’ or ‘patches’ of face cells - see (Rolls,
1992) - and is taken by some as evidence for local exci-
tatory and more diverse inhibitory connections within
the processing layers akin to those used in competitive
networks - see (Wallis & B̈ulthoff, 1999; Riesenhuber
& Poggio, 2000).

6 Models of object representation and
recognition

There have been a huge number of systems for object
recognition proposed over the years. Some largely in-
spired by the desire to build intelligent machines, and
some by the desire to describe human recognition pro-
cesses. This section summarises some of the popu-
lar models and their relevance, or otherwise, to hu-
man object recognition (see also review articles on the
topic: (Wallis & Bülthoff, 1999; Riesenhuber & Pog-
gio, 2000)).

One family of models, which owes its heritage to
AI research in the 1970s, sees the need to extract cues
to 3D structure. Using texture gradients, linear per-
spective, structure from motion, etc. it seeks to trans-
form the retinal image into a fully fledged internal
3D model, capable of rotation, scaling, translation and
therefore matching to a store of known objects. Vari-
ous means for achieving this reconstruction have been
proposed, though perhaps the most preeminent is the
geon theory of Biedermann, and its associated network
model called JIM (Hummel & Biederman, 1992). Un-
fortunately, whilst there are plenty of neurons sensitive
to cues such as terminated edges or complex forms of
motion, neurophysiologists have yet to find evidence
for large quantities of the types of neural analysers
which these types of models would predict, and even
less evidence for the set of 36 3D volumetric build-
ing blocks which Biederman’s theory claims are com-
bined to represent all objects. What is more, there is
only limited evidence for the neural synchronisation
mechanism which it uses to bind elements of activated
geons, and there no evidence of neurons purely selec-
tive to spatial relationships of parts such as ‘left-of’,
‘above’ etc. Nonetheless, some form of structural rep-
resentation must surely exist, particularly in defining
object categories for distinguishing a quadruped from
a biped, or telephone from an elephant. The JIM model
is one of the very few models focused on human ob-
ject recognition which provides a principled means of
extracting and representing structure.

As an alternative to this type of bottom-up object re-
construction, a number of approaches to object recog-
nition have looked at the possibility of matching the
incoming image to a large collection of 2D images or
whole 3D objects. This process takes a number of dif-
ferent forms. In some models the image of the object
is normalised for size and location and then simply
matched pixel by pixel to a stored set of images. Of
course, simple 3D transformations such as depth ro-
tation lead to non-trivial changes in the 2D projected
image. To compensate for this, some models have em-
ployed local distortions of the incoming image in the
matching process. Others have presupposed an ability
to extract 3D anchor points in the image which allow
stored 3D representations to be rotated and scaled in
3D before before the matching process begins. In prac-
tice, most of these models work well on predefined sets
of objects and small changes in appearance, but are
prone to errors if the incoming image changes consid-
erably. Understandably, models which employ local
distortion or rotation algorithms are more robust, but
this comes with a cost. The models are slow and be-
come slower the more objects are stored in the internal
library. The simplest form of 2D template matching is
at least fast, and if the process proceeds in parallel, it
can scale extremely well as the number of objects in-
creases. However, where all of these models fall down
is in explaining our ability to categorise and generalise
recognition of new objects to changes in viewing di-
rection.

A possible solution to this final problem is based
on a further alternative for how objects are represented
and recognised. This approach once again suggests
that objects are stored as images or multiple views
(Bülthoff & Edelman, 1992). However, rather than
being stored as a single template, each view is repre-
sented as a collection of small picture elements, each
tolerant to small view changes (Wallis & Bülthoff,
1999; Riesenhuber & Poggio, 2000). Such a system
immediately reaps the benefits of a distributed encod-
ing system described above, in terms of robustness and
transformation generalisation for novel objects, it also
accords with the types of neural response properties
known to exist in the ventral stream.

In practice, many systems base recognition on the
combination of pictorial features. Some have simply
attempted to look across the entire image for tell tale
features irrespective of relative position, as evidence
for the presence of one object rather than another. Of
course, models which throw away spatial information
in this way, run into the problem of ‘recognising’ ran-
dom rearrangements of the features triggering recog-
nition. This is not the case for real neurons responsive
to faces which often reduce their response to faces in
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which the features appear jumbled up (Logothetis &
Sheinberg, 1996; Rolls, 1992). Nor is it true for cells
responsive to more abstract features (Tanaka et al.,
1991), indeed this is an example of the feature bind-
ing problem. As described in the hierachy section, one
solution to this problem is to combine features grad-
ually over a series of stages, achieving translation in-
variance step by step. This has inspired many theo-
rists to take this approach in object recognition. One
of the first to construct a truely hierachical model was
(Fukushima, 1980). His Neocognitron is an elegant
example of how piecewise combinations of features
can lead to comprehensive translation and scale invari-
ance whilst at the same time retaining object specificity
and thereby avoiding one form of the ‘feature binding
problem’. Fukushima’s ideas accord well both with
elements of the known neurophysiology of the ventral
stream and a view-based scheme of object representa-
tion and has inspired a whole series of models - see
(Wallis & Rolls, 1997; Riesenhuber & Poggio, 2000).
The Riesenhuber et al. paper also describes their de-
velopment of Fukushima’s model and how it predicts
the use of a non-linear weighting mechanism on the
inputs to neurons of each layer. Likewise Wallis et al.
describe their own model, which is once again hierar-
chical and convergent but simpler in structure. Despite
its simplicity it has been shown to be able to learn in-
variant representations of objects without recourse to
non-local learning mechanisms; supervised learning;
specialist neural populations; or specific, prescribed
connectivity. An important omission from such mod-
els is any explicit representation of object structure.
As mentioned above, structure may well be important
for higher levels of catagorisation, for distinguishing
broad categories such as insects from mammals. Im-
age based approaches, on the other hand, are probably
of more importance for within category discrimination
such as a Peacock butterfly from a Meadow Brown.

One aspect which the hierachical feedforward mod-
els lack is an account of the effects of top-down in-
formation due to expectation or selective attention. As
such they only really deal with recognition within the
high acuity centre of the visual field and would require
some other mechanism for locating and fixating ob-
jects. One hierachical model which does consider this
is due to (Olhausen, Anderson, & Essen, 1993). It se-
lects targets by controlling the breadth and number of
pathways present in the model’s hierachy. Recognition
is achieved using a classical object matching algorithm
which immediately suffers from the disadvantages de-
scribed above, but the model does provide insight into
a possible mechanism for object selection and with it,
an additional solution to the problem of translation and
scale invariance.

7 Temporal order

Whilst it is possible to conceive of the ventral stream
building features to represent individual views of ob-
jects, the question still remains as to how neurons learn
to treat their preferred feature as the same, irrespec-
tive of size or location. Indeed, ultimately, one would
like to understand how neurons learn to recognise ob-
jects as they undergo non-trivial transformations per-
haps due to changes in viewing direction or lighting.

One solution to this problem is to assume that each
neuron receives some external information as to the
identity of a particular stimulus. Of course, this simply
begs the question of where this information originates
in the first place. To describe a potential solution it is
worth reflecting on what clues our environment gives
us about how to associate the stream of images that we
see in everyday life. Recently, several theorists have
argued that our natural environment provides a tempo-
ral cue to object identity. This cue emerges from the
simple fact that we often study objects for extended
periods. This then provides us with a simple heuristic
for deciding how to associate novel images of objects
with stored object representations. Since objects are
often seen over extended periods, any unrecognised
view coming straight after a recognised one is most
probably of the same object. This heuristic will work
as long as accidental associations from one object to
another are random and associations from one view of
an object to another are experienced regularly. There is
every reason to suppose that this is actually what will
happen under normal viewing conditions, and that by
approaching an object, watching it move, or rotating
it in our hand we will receive a consistent associative
signal capable of bringing all of the views of the object
together.

It was (Miyashita, 1993) who discovered that many
neurons within IT cortex had developed selectivity for
small sets of fractal images which he had been using
in a short-term memory task. Although this task did
not explicitly require the overall test sequence to be
remembered, Miyashita noted that these neurons con-
sistently responded well to single images which neigh-
boured one another in the test sequence. For example,
one neuron might respond preferentially to images 5,
6 and 7, whereas another neuron would respond to im-
ages 37, 38 and 39. The fact that the images were
generated randomly, meant that there was no partic-
ular reason - on the grounds of spatial similarity - why
these images should have become associated together
by a single neuron. Instead, the results indicate the im-
portance of temporal order in controlling the learning
of neural selectivity. Recent studies of human recog-
nition learning have found evidence for such a mech-
anism as well (Wallis & B̈ulthoff, 2001). Taken to-
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gether the two sources of evidence provide important
preliminary support for the temporal association hy-
pothesis (Wallis & B̈ulthoff, 1999). Several network
models have made successful use of the temporal cue
to view association and it forms the core of learning in
the model described by (Wallis & Rolls, 1997).

8 Discussion

This article has reviewed much of the current think-
ing on object recognition. In particular it has pro-
posed the presence of a distributed, view-based repre-
sentation, in which objects are recognised on the basis
of multiple, 2D feature selective neurons. Specialist
cells appear to play a role in associating such feature
combinations into certain non-trivial image transfor-
mations, coding for a certain percentage of all stim-
uli in a largely view invariant manner. We have also
pointed to evidence that a convergent hierachy is used
to build invariant representations over several stages,
and that at each stage lateral competitive processes are
at work between the neurons.

In the final section we argued that temporal associ-
ation could act as a cue for associating views of ob-
jects. It is worth pointing out that if such a mechanism
does exist it can only work in the ventral stream since it
wouldnotbe appropriate in the dorsal visual system, in
which motion and location are processed (Ungerleider
& Haxby, 1994). Indeed, the importance of using tem-
poral association in invariant object recognition, and
the importance of not making such assoications in the
part of the visual system involved in processing mo-
tion and location, might be a fundamental reason for
keeping these two processing streams apart.

We also made mention of the analysis of visual
scenes both within and beyond the ventral stream. Al-
though much has been said about the roles of the pari-
etal and temporal lobes, relatively little has been said
about the frontal lobe. What we do know, is that it acts
as a temporary or working memory store and that neu-
rons within the frontal lobe are responsive to combina-
tions of both where and what an object is. It may well
turn out that the frontal lobe acts as a running store
of objects currently being represented within a scene
(Rensink, 2000), and a challenge for models in the fu-
ture will be to integrate the frontal lobe into the overall
picture of scene analysis.
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