English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cost-benefit analysis for commissioning decisions in GEO600

MPS-Authors
/persons/resource/persons40528

Leong,  J. R.
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons45960

Was,  M.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society, Hannover, DE;

/persons/resource/persons40422

Affeldt,  C.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons42127

Degallaix,  J.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons104897

Dooley,  K.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40456

Grote,  H.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons4336

Hild,  S.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40475

Lueck,  H.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons1462

Prijatelj,  M.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons1466

Strain,  K. A.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40504

Vahlbruch,  H.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40437

Danzmann,  K.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1501.00571.pdf
(Preprint), 4MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Adams, T., Leong, J. R., Slutsky, J., Was, M., Affeldt, C., Degallaix, J., et al. (2015). Cost-benefit analysis for commissioning decisions in GEO600. Classical and quantum gravity, 32: 135014. doi:10.1088/0264-9381/32/13/135014.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0027-BCCF-8
Abstract
Gravitational wave interferometers are complex instruments, requiring years
of commissioning to achieve the required sensitivities for the detection of
gravitational waves, of order 10^-21 in dimensionless detector strain, in the
tens of Hz to several kHz frequency band. Investigations carried out by the
GEO600 detector characterisation group have shown that detector
characterisation techniques are useful when planning for commissioning work. At
the time of writing, GEO600 is the only large scale laser interferometer
currently in operation running with a high duty factor, 70%, limited chiefly by
the time spent commissioning the detector. The number of observable
gravitational wave sources scales as the product of the volume of space to
which the detector is sensitive and the observation time, so the goal of
commissioning is to improve the detector sensitivity with the least possible
detector down time. We demonstrate a method for increasing the number of
sources observable by such a detector, by assessing the severity of
non-astrophysical noise contaminations to efficiently guide commissioning. This
method will be particularly useful in the early stages and during the initial
science runs of the aLIGO and adVirgo detectors, as they are brought up to
design performance.