
Tight Conditional Lower Bounds for Longest Common Increasing

Subsequence

Lech Duraj∗1, Marvin Künnemann2, and Adam Polak†1

1 Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland, {duraj,polak}@tcs.uj.edu.pl

2 Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken,
Germany, marvin@mpi-inf.mpg.de

Abstract

We consider the canonical generalization of the well-studied Longest Increasing Subsequence
problem to multiple sequences, called k-LCIS: Given k integer sequences X1, . . . , Xk of length at
most n, the task is to determine the length of the longest common subsequence of X1, . . . , Xk that is
also strictly increasing. Especially for the case of k = 2 (called LCIS for short), several algorithms
have been proposed that require quadratic time in the worst case.

Assuming the Strong Exponential Time Hypothesis (SETH), we prove a tight lower bound,
specifically, that no algorithm solves LCIS in (strongly) subquadratic time. Interestingly, the proof
makes no use of normalization tricks common to hardness proofs for similar problems such as LCS.
We further strengthen this lower bound (1) to rule out O

(
(nL)1−ε

)
time algorithms for LCIS, where

L denotes the solution size, (2) to rule out O
(
nk−ε

)
time algorithms for k-LCIS, and (3) to follow

already from weaker variants of SETH. We obtain the same conditional lower bounds for the related
Longest Common Weakly Increasing Subsequence problem.

1 Introduction

The longest common subsequence problem (LCS) and its variants are computational primitives with a
variety of applications, which includes, e.g., uses as similarity measures for spelling correction [37, 43]
or DNA sequence comparison [39, 5], as well as determining the differences of text files as in the UNIX
diff utility [28]. LCS shares characteristics of both an easy and a hard problem: (Easy) A simple and
elegant dynamic-programming algorithm computes an LCS of two length-n sequences in time O

(
n2
)

[43],
and in many practical settings, certain properties of typical input sequences can be exploited to obtain
faster, “tailored” solutions (e.g., [27, 29, 7, 38]; see also [14] for a survey). (Hard) At the same time, no
polynomial improvements over the classical solution are known, thus exact computation may become
infeasible for very long general input sequences. The research community has sought for a resolution of
the question “Do subquadratic algorithms for LCS exist?” already shortly after the formalization of the
problem [21, 4].

Recently, an answer conditional on the Strong Exponential Time Hypothesis (SETH; see Section 2
for a definition) could be obtained: Based on a line of research relating the satisfiability problem to
quadratic-time problems [44, 41, 15, 3] and following a breakthrough result for Edit Distance [9], it has
been shown that unless SETH fails, there is no (strongly) subquadratic-time algorithm for LCS [1, 16].
Subsequent work [2] strengthens these lower bounds to hold already under weaker assumptions and even
provides surprising consequences of sufficiently strong polylogarithmic improvements.

Due to its popularity and wide range of applications, several variants of LCS have been proposed. This
includes the heaviest common subsequence (HCS) [32], which introduces weights to the problem, as well
as notions that constrain the structure of the solution, such as the longest common increasing subsequence

∗Partially supported by Polish National Science Center grant 2016/21/B/ST6/02165.
†Partially supported by Polish Ministry of Science and Higher Education program Diamentowy Grant.

1

ar
X

iv
:1

70
9.

10
07

5v
1 

 [
cs

.C
C

] 
 2

8 
Se

p 
20

17



(LCIS) [46], LCSk [13], constrained LCS [42, 20, 8], restricted LCS [26], and many other variants (see,
e.g., [19, 6, 33]). Most of these variants are (at least loosely) motivated by biological sequence comparison
tasks. To the best of our knowledge, in the above list, LCIS is the only LCS variant for which (1) the
best known algorithms run in quadratic time in the worst case and (2) its definition does not include
LCS as a special case (for such generalizations of LCS, the quadratic-time SETH hardness of LCS [1, 16]
would transfer immediately). As such, it is open to determine whether there are (strongly) subquadratic
algorithms for LCIS or whether such algorithms can be ruled out under SETH. The starting point of our
work is to settle this question.

1.1 Longest Common Increasing Subsequence (LCIS)

The Longest Common Increasing Subsequence problem on k sequences (k-LCIS) is defined as follows:
Given integer sequences X1, . . . , Xk of length at most n, determine the length of the longest sequence Z
such that Z is a strictly increasing sequence of integers and Z is a subsequence of each Xi, i ∈ {1, . . . , k}.
For k = 1, we obtain the well-studied longest increasing subsequence problem (LIS; we refer to [22] for
an overview), which has an O (n log n) time solution and a matching lower bound in the decision tree
model [25]. The extension to k = 2, denoted simply as LCIS, has been proposed by Yang, Huang, and
Chao [46], partially motivated as a generalization of LIS and by potential applications in bioinformatics.
They obtained an O

(
n2
)

time algorithm, leaving open the natural question whether there exists a way
to extend the near-linear time solution for LIS to a near-linear time solution for multiple sequences.

Interestingly, already a classic connection between LCS and LIS combined with a recent conditional
lower bound of Abboud, Backurs and Vassilevska Williams [1] yields a partial negative answer assuming
SETH.

Observation 1 (Folklore reduction, implicit in [29], explicit in [32]). After O
(
kn2

)
time preprocessing,

we can solve k-LCS by a single call to (k − 1)-LCIS on sequences of length at most n2.

Proof. Let L(σ) denote the descending sequence of positions k with X1[k] = σ. We define sequences
X ′i = L(Xi[0]) · · ·L(Xi[|Xi| − 1]) for all i ∈ {2, . . . , k}. It is straightforward to see that for any `, the
length-` increasing common subsequences of X ′2, . . . , X

′
k are in one-to-one correspondence to length-`

common subsequences of X1, . . . , Xk. Thus, the length of the LCIS of X ′2, . . . , X
′
k is equal to the length

of the LCS of X1, . . . , Xk, and the claim follows since |L(σ)| 6 n for all σ.

Corollary 2. Unless SETH fails, there is no O
(
n

3
2−ε
)

time algorithm for LCIS for any constant ε > 0.

Proof. Note that by the above reduction, an O
(
n

3
2−ε
)

time LCIS algorithm would give an O
(
n3−2ε

)
time algorithm for 3-LCS. Such an algorithm would refute SETH by a result of Abboud et al. [1].

While this rules out near-linear time algorithms, still an unsatisfying large polynomial gap between
best upper and conditional lower bounds persists.

1.2 Our Results

Our first result is a tight SETH-based lower bound for LCIS.

Theorem 3. Unless SETH fails, there is no O
(
n2−ε) time algorithm for LCIS for any constant ε > 0.

We extend our main result in several directions.

1.2.1 Parameterized Complexity I: Solution Size

Subsequent work [18, 35] improved over Yang et al.’s algorithm when certain input parameters are small.
Here, we focus particularly on the solution size, i.e., the length L of the LCIS. Kutz et al. [35] provided
an algorithm running in time O (nL log log n+ n log n). If L is small compared to its worst-case upper

bound of n, say L = n
1
2±o(1), this algorithm runs in strongly subquadratic time. Interestingly, exactly for

this case, the reduction from 3-LCS to LCIS of Observation 1 already yields a matching SETH-based

2



lower bound of (Ln)1−o(1) = n
3
2−o(1). However, for smaller L, this reduction yields no lower bound at all

and only a non-matching lower bound for larger L. We remedy this situation by the following result.1

Theorem 4. Unless SETH fails, there is no O
(
(nL)1−ε) time algorithm for LCIS for any constant

ε > 0. This even holds restricted to instances with L = nγ±o(1), for arbitrarily chosen 0 < γ 6 1.

1.2.2 Parameterized Complexity II: k-LCIS

For constant k > 3, we can solve k-LCIS in O
(
nkpolylog(n)

)
time [18, 35], or even O

(
nk
)

time (see

the appendix). While it is known that k-LCS cannot be computed in time O
(
nk−ε

)
for any constant

ε > 0, k > 2 unless SETH fails [1], this does not directly transfer to k-LCIS, since the reduction in
Observation 1 is not tight. However, by extending our main construction, we can prove the analogous
result.

Theorem 5. Unless SETH fails, there is no O
(
nk−ε

)
time algorithm for k-LCIS for any constant k > 3

and ε > 0.

1.2.3 Longest Common Weakly Increasing Subsequence (LCWIS)

We consider a closely related variant of LCIS called the Longest Common Weakly Increasing Subsequence
(k-LCWIS): Here, given integer sequences X1, . . . , Xk of length at most n, the task is to determine the
longest weakly increasing (i.e. non-decreasing) integer sequence Z that is a common subsequence of
X1, . . . , Xk. Again, we write LCWIS as a shorthand for 2-LCWIS. Note that the seemingly small change
in the notion of increasing sequence has a major impact on algorithmic and hardness results: Any instance
of LCIS in which the input sequences are defined over a small-sized alphabet Σ ⊆ Z, say |Σ| = O

(
n1/2

)
,

can be solved in strongly subquadratic time O (nL log n) = O
(
n3/2 log n

)
[35], by using the fact that

L 6 |Σ|. In contrast, LCWIS is quadratic-time SETH hard already over slightly superlogarithmic-sized
alphabets [40]. We give a substantially different proof for this fact and generalize it to k-LCWIS.

Theorem 6. Unless SETH fails, there is no O
(
nk−ε

)
time algorithm for k-LCWIS for any constant

k > 3 and ε > 0. This even holds restricted to instances defined over an alphabet of size |Σ| 6 f(n) log n
for any function f(n) = ω(1) growing arbitrarily slowly.

1.2.4 Strengthening the Hardness

In an attempt to strengthen the conditional lower bounds for Edit Distance and LCS [9, 1, 16], particularly,
to obtain barriers even for subpolynomial improvements, Abboud, Hansen, Vassilevska Williams, and
Williams [2] gave the first fine-grained reductions from the satisfiability problem on branching programs.
Using this approach, the quadratic-time hardness of a problem can be explained by considerably weaker
variants of SETH, making the conditional lower bound stronger. We show that our lower bounds also
hold under these weaker variants. In particular, we prove the following.

Theorem 7. There is no strongly subquadratic time algorithm for LCIS, unless there is, for some ε > 0,
an O

(
(2− ε)N

)
algorithm for the satisfiability problem on branching programs of width W and length T

on N variables with (logW )(log T ) = o (N).

1.3 Discussion, Outline and Technical Contributions

Apart from an interest in LCIS and its close connection to LCS, our work is also motivated by an interest
in the optimality of dynamic programming (DP) algorithms2. Notably, many conditional lower bounds in
P target problems with natural DP algorithms that are proven to be near-optimal under some plausible
assumption (see, e.g., [15, 3, 9, 10, 1, 16, 11, 23, 34] and [45] for an introduction to the field). Even if we
restrict our attention to problems that find optimal sequence alignments under some restrictions, such as
LCS, Edit Distance and LCIS, the currently known hardness proofs differ significantly, despite seemingly

1We mention in passing that a systematic study of the complexity of LCS in terms of such input parameters has been
performed recently in [17].

2We refer to [47] for a simple quadratic-time DP formulation for LCIS.

3



small differences between the problem definitions. Ideally, we would like to classify the properties of a
DP formulation which allow for matching conditional lower bounds.

One step in this direction is given by the alignment gadget framework [16]. Exploiting normalization
tricks, this framework gives an abstract property of sequence similarity measures to allow for SETH-based
quadratic lower bounds. Unfortunately, as it turns out, we cannot directly transfer the alignment gadget
hardness proof for LCS to LCIS – some indication for this difficulty is already given by the fact that
LCIS can be solved in strongly subquadratic time over sublinear-sized alphabets [35], while the LCS
hardness proof already applies to binary alphabets. By collecting gadgetry needed to overcome such
difficulties (that we elaborate on below), we hope to provide further tools to generalize more and more
quadratic-time lower bounds based on SETH.

1.3.1 Technical Challenges

The known conditional lower bounds for global alignment problems such as LCS and Edit Distance work
as follows. The reductions start from the quadratic-time SETH-hard Orthogonal Vectors problem (OV),
that asks to determine, given two sets of (0, 1)-vectors U = {u0, . . . , un−1},V = {v0, . . . , vn−1} ⊆ {0, 1}d
over d = no(1) dimensions, whether there is a pair i, j such that ui and vj are orthogonal, i.e., whose

inner product (ui · vj) :=
∑d−1
k=0 ui[k] · vj [k] is 0 (over the integers). Each vector ui and vj is represented

by a (normalized) vector gadget VGx(ui) and VGy(vj), respectively. Roughly speaking, these gadgets are
combined to sequences X and Y such that each candidate for an optimal alignment of X and Y involves
locally optimal alignments between n pairs VGx(ui),VGy(vj) – the optimal alignment exceeds a certain
threshold if and only if there is an orthogonal pair ui, vj .

An analogous approach does not work for LCIS: Let VGx(ui) be defined over an alphabet Σ and
VGx(ui′) over an alphabet Σ′. If Σ and Σ′ overlap, then VGx(ui) and VGx(ui′) cannot both be aligned
in an optimal alignment without interference with each other. On the other hand, if Σ and Σ′ are disjoint,
then each vector vj should have its corresponding vector gadget V Gy(vj) defined over both Σ and Σ′ to
enable to align VGx(ui) with VGy(vj) as well as VGx(ui′) with VGy(vj). The latter option drastically
increases the size of vector gadgets. Thus, we must define all vector gadgets over a common alphabet Σ
and make sure that only a single pair VGx(ui),VGy(vj) is aligned in an optimal alignment (in contrast
with n pairs aligned in the previous reductions for LCS and Edit Distance).

1.3.2 Technical Contributions and Proof Outline

Fortunately, a surprisingly simple approach works: As a key tool, we provide separator sequences
α0 . . . αn−1 and β0 . . . βn−1 with the following properties: (1) for every i, j ∈ {0, . . . , n− 1} the LCIS of
α0 . . . αi and β0 . . . βj has a length of f(i+ j), where f is a linear function, and (2)

∑
i |αi| and

∑
j |βj |

are bounded by n1+o(1). Note that existence of such a gadget is somewhat unintuitive: condition (1) for
i = 0 and j = n− 1 requires |α0| = Ω(n), yet still the total length

∑
i |αi| must not exceed the length

of |α0| significantly. Indeed, we achieve this by a careful inductive construction that generates such
sequences with heavily varying block sizes |αi| and |βj |.

We apply these separator sequences as follows. We first define simple vector gadgets VGx(ui),VGy(vj)
over an alphabet Σ such that the length of an LCIS of VGx(ui) and VGy(vj) is d− (ui · vj). Then we
construct the separator sequences as above over an alphabet Σ< whose elements are strictly smaller than
all elements in Σ. Furthermore, we create analogous separator sequences α′0 . . . α

′
n−1 and β′0 . . . β

′
n−1

which satisfy a property like (1) for all suffixes instead of prefixes, using an alphabet Σ> whose elements
are strictly larger than all elements in Σ. Now, we define

X = α0VGx(u0)α′0 . . . αn−1VGx(un−1)α′n−1,

Y = β0VGy(v0)β′0 . . . βn−1VGy(vn−1)β′n−1.

As we will show in Section 3, the length of an LCIS of X and Y is C −mini,j(ui · vj) for some constant
C depending only on n and d.

In contrast to previous such OV-based lower bounds, we use heavily varying separators (paddings)
between vector gadgets.

4



2 Preliminaries

As a convention, we use capital or Greek letters to denote sequences over integers. Let X,Y be
integer sequences. We write |X| for the length of X, X[k] for the k-th element in the sequence X
(k ∈ {0, . . . , |X| − 1}), and X ◦ Y = XY for the concatenation of X and Y . We say that Y is a
subsequence of X if there exist indices 0 6 i1 < i2 < · · · < i|Y | 6 |X| − 1 such that X[ik] = Y [k] for all
k ∈ {0, . . . , |Y |− 1}. Given any number of sequences X1, . . . , Xk, we say that Y is a common subsequence
of X1, . . . , Xk if Y is a subsequence of each Xi, i ∈ {1, . . . , k}. X is called strictly increasing (or weakly
increasing) if X[0] < X[1] < · · · < X[|X| − 1] (or X[0] 6 X[1] 6 · · · 6 X[|X| − 1]). For any k sequences
X1, . . . , Xk, we denote by lcis(X1, . . . , Xk) the length of their longest common subsequence that is strictly
increasing.

2.1 Hardness Assumptions

All of our lower bounds hold assuming the Strong Exponential Time Hypothesis (SETH), introduced by
Impagliazzo and Paturi [30, 31]. It essentially states that no exponential speed-up over exhaustive search
is possible for the CNF satisfiability problem.

Hypothesis 8 (Strong Exponential Time Hypothesis (SETH)). There is no ε > 0 such that for all d > 3
there is an O

(
2(1−ε)n) time algorithm for d-SAT.

This hypothesis implies tight hardness of the k-Orthogonal Vectors problem (k-OV), which will be
the starting point of our reductions: Given k sets U1, . . . ,Uk ⊆ {0, 1}d, each with |Ui| = n vectors
over d = no(1) dimensions, determine whether there is a k-tuple (u1, . . . , uk) ∈ U1 × · · · × Uk such that∑d−1
`=0

∏k
i=1 ui[`] = 0. By exhaustive enumeration, it can be solved in time O

(
nkd

)
= nk+o(1). The

following conjecture is implied by SETH by the well-known split-and-list technique of Williams [44] (and
the sparsification lemma [31]).

Hypothesis 9 (k-OV conjecture). Let k > 2. There is no O
(
nk−ε

)
time algorithm for k-OV, with

d = ω(log n), for any constant ε > 0.

For the special case of k = 2, which we simply denote by OV, we obtain the following weaker conjecture.

Hypothesis 10 (OV conjecture). There is no O
(
n2−ε) time algorithm for OV, with d = ω(log n), for

any constant ε > 0. Equivalently, even restricted to instances with |U1| = n and |U2| = nγ, 0 < γ 6 1,
there is no O

(
n1+γ−ε) time algorithm for OV, with d = ω(log n), for any constant ε > 0.

A proof of the folklore equivalence of the statements for equal and unequal set sizes can be found,
e.g., in [16].

3 Main Construction: Hardness of LCIS

In this section, we prove quadratic-time SETH hardness of LCIS, i.e., prove Theorem 3. We first introduce
an inflation operation, which we then use to construct our separator sequences. After defining simple
vector gadgets, we show how to embed an Orthogonal Vectors instance using our vector gadgets and
separator sequences.

3.1 Inflation

We begin by introducing the inflation operation, which roughly corresponds to weighing the sequences.

Definition 11. For a sequence A = 〈a0, a1, . . . , an−1〉 of integers we define:

inflate(A) = 〈2a0 − 1, 2a0, 2a1 − 1, 2a1, . . . , 2an−1 − 1, 2an−1〉 .

Lemma 12. For any two sequences A and B, lcis(inflate(A), inflate(B)) = 2 · lcis(A,B).

5



Proof. Let C be the longest common increasing subsequence of A and B. Observe that inflate(C) is a com-
mon increasing subsequence of inflate(A) and inflate(B) of length 2 · |C|, thus lcis(inflate(A), inflate(B)) >
2 · lcis(A,B).

Conversely, let Ā denote inflate(A) and B̄ denote inflate(B). Let C̄ be the longest common increasing
subsequence of Ā and B̄. If we divide all elements of C̄ by 2 and round up to the closest integer, we end
up with a weakly increasing sequence. Now, if we remove duplicate elements to make this sequence strictly
increasing, we obtain C, a common increasing subsequence of A and B. At most 2 distinct elements may
become equal after division by 2 and rounding, therefore C contains at least

⌈
lcis(Ā, B̄)/2

⌉
elements, so

2 · lcis(A,B) > lcis(Ā, B̄). This completes the proof.

3.2 Separator sequences

Our goal is to construct two sequences A and B which can be split into n blocks, i.e. A = α0α1 . . . αn−1

and B = β0β1 . . . βn−1, such that the length of the longest common increasing subsequence of the first i
blocks of A and the first j blocks of B equals i+ j, up to an additive constant. We call A and B separator
sequences, and use them later to separate vector gadgets in order to make sure that only one pair of
gadgets may interact with each other at the same time.

We construct the separator sequences inductively. For every k ∈ N, the sequences Ak and Bk are

concatenations of 2k blocks (of varying sizes), Ak = α0
kα

1
k . . . α

2k−1
k and Bk = β0

kβ
1
k . . . β

2k−1
k . Let sk

denote the largest element of both sequences. As we will soon observe, sk = 2k+2 − 3.
The construction works as follows: for k = 0, we can simply set A0 and B0 as one-element sequences 〈1〉.

We then construct Ak+1 and Bk+1 inductively from Ak and Bk in two steps. First, we inflate both
Ak and Bk, then after each (now inflated) block we insert 3-element sequences, called tail gadgets,
〈2sk + 2, 2sk + 1, 2sk + 3〉 for Ak+1 and 〈2sk + 1, 2sk + 2, 2sk + 3〉 for Bk+1. Formally, we describe the
construction by defining blocks of the new sequences. For i ∈ {0, 1, . . . , 2k − 1},

α2i
k+1 = inflate(αik) ◦ 〈2sk + 2〉 , α2i+1

k+1 = 〈2sk + 1, 2sk + 3〉 ,
β2i
k+1 = inflate(βik) ◦ 〈2sk + 1〉 , β2i+1

k+1 = 〈2sk + 2, 2sk + 3〉 .

Note that the symbols appearing in tail gadgets do not appear in the inflated sequences. The largest
element of both new sequences sk+1 equals 2sk + 3, and solving the recurrence gives indeed sk = 2k+2− 3.

1 2 3 4 5 6 11 12 7 8 9 1011 13 11 1211 13

tail gadget︷ ︸︸ ︷inflate(α0
1)︷ ︸︸ ︷

1 2

α0
1

3 4 5

α1
1

inflate(α1
1)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷

α0
2 α1

2 α2
2 α3

2

1

inflate(α0
0)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷

α0
0

A1

A2

A0

1

β0
0

B0 1 2

β0
1

4 3 5

β1
1

inflate(β0
0)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷

B1

1 2 3 4 7 8 11 11 5 6 9 1012 13 11 1112 13

tail gadget︷ ︸︸ ︷inflate(β0
1)︷ ︸︸ ︷ inflate(β1

1)︷ ︸︸ ︷ tail gadget︷ ︸︸ ︷
β0

2 β1
2 β2

2 β3
2

B2

Figure 1: Initial steps of the inductive construction of the separator sequences.

6



2sk + 2 2sk + 1 2sk + 3

︸ ︷︷ ︸
α2i+1
k+1

︸ ︷︷ ︸
α2ik+1

αik︷ ︸︸ ︷

x x+ 2
x+ 1

x+ 1

· · · 2sk + 2 2sk + 1 2sk + 3

· · · 2sk + 1 2sk + 2 2sk + 3

︸ ︷︷ ︸
β2j+1
k+1

Ak+1 :

Bk+1 :

lcis :

︸ ︷︷ ︸
β2j
k+1

α2i+1
k+1︷ ︸︸ ︷α2i

k+1︷ ︸︸ ︷

Figure 2: Left: constructing Ak+1 from Ak. Right: intuition behind tail gadgets, x = 2i+ 2j + 2k+1.

Now, let us prove two useful properties of the separator sequences.

Lemma 13. |Ak| = |Bk| =
(

3
2k + 1

)
· 2k = O

(
k2k
)
.

Proof. Observe that |Ak+1| = 2|Ak|+ 3 · 2k. Indeed, to obtain Ak+1 first we double the size of Ak and
then add 3 new elements for each of the 2k blocks of Ak. Solving the recurrence completes the proof.
The same reasoning applies to Bk.

Lemma 14. For every i, j ∈
{

0, 1, . . . , 2k − 1
}

, lcis(α0
k . . . α

i
k, β

0
k . . . β

j
k) = i+ j + 2k.

Proof. The proof is by induction on k. Assume the statement is true for k and let us prove it for k + 1.

The “>” direction. First, consider the case when both i and j are even. Observe that inflate(α0
k . . . α

i/2
k )

and inflate(β0
k . . . β

j/2
k ) are subsequences of α0

k+1 . . . α
i
k+1 and β0

k+1 . . . β
j
k+1, respectively. Thus, using the

induction hypothesis and inflation properties,

lcis(α0
k+1 . . . α

i
k+1, β0

k+1 . . . β
j
k+1) > lcis(inflate(α0

k . . . α
i/2
k ), inflate(β0

k . . . β
j/2
k )) =

= 2 · lcis(α0
k . . . α

i/2
k , β0

k . . . β
j/2
k ) = 2 · (i/2 + j/2 + 2k) = i+ j + 2k+1.

If i is odd and j is even, refer to the previous case to get a common increasing subsequence of α0
k+1 . . . α

i−1
k+1

and β0
k+1 . . . β

j
k+1 of length i− 1 + j + 2k+1 consisting only of elements less than or equal to 2sk, and

append the element 2sk + 1 to the end of it. Analogously, for i even and j odd, take such an LCIS of
α0
k+1 . . . α

i
k+1 and β0

k+1 . . . β
j−1
k+1, and append 2sk + 2. Finally, for both i and j odd, take an LCIS of

α0
k+1 . . . α

i−1
k+1 and β0

k+1 . . . β
j−1
k+1, and append 2sk + 1 and 2sk + 3.

The “6” direction. We proceed by induction on i+ j. Fix i and j, and let L be a longest common
increasing subsequence of α0

k+1 . . . α
i
k+1 and β0

k+1 . . . β
j
k+1.

If the last element of L is less than or equal to 2sk, L is in fact a common increasing subsequence of

inflate(α0
k . . . α

bi/2c
k ) and inflate(β0

k . . . β
bj/2c
k ), thus, by the induction hypothesis and inflation properties,

|L| 6 2 · (bi/2c+ bj/2c+ 2k) 6 i+ j + 2k+1.
The remaining case is when the last element of L is greater than 2sk. In this case, consider the

second-to-last element of L. It must belong to some blocks αi
′

k+1 and βj
′

k+1 for i′ 6 i and j′ 6 j, and we
claim that i = i′ and j = j′ cannot hold simultaneously: by construction of separator sequences, if blocks
αik+1 and βjk+1 have a common element larger than 2sk, then it is the only common element of these
two blocks. Therefore, it cannot be the case that both i = i′ and j = j′, because the last two elements

7



of L would then be located in αik+1 and βjk+1. As a consequence, i′ + j′ < i + j, which lets us apply
the induction hypothesis to reason that the prefix of L omitting its last element is of length at most
i′ + j′ + 2k+1. Therefore, |L| 6 1 + i′ + j′ + 2k+1 6 i+ j + 2k+1, which completes the proof.

Observe that if we reverse the sequences Ak and Bk along with changing all elements to their negations,

i.e. x to −x, we obtain sequences Âk and B̂k such that Âk splits into 2k blocks α̂0
k . . . α̂

2k−1
k , B̂k splits

into 2k blocks β̂0
k . . . β̂

2k−1
k , and

lcis(α̂ik . . . α̂
2k−1
k , β̂jk . . . β̂

2k−1
k ) = 2 · (2k − 1)− i− j + 2k. (1)

Finally, observe that we can add any constant to all elements of the sequences Ak and Bk (as well
as Âk and B̂k) without changing the property stated in Lemma 14 (and its analogue for Âk and B̂k,
i.e. Equation (1)).

3.3 Vector gadgets

Let U = {u0, . . . , un−1} and V = {v0, . . . , vn−1} be two sets of d-dimensional (0, 1)-vectors.
For i ∈ {0, 1, . . . , n − 1} let us construct the vector gadgets Ui and Vi as 2d-element sequences, by

defining, for every p ∈ {0, 1, . . . , d− 1},

(Ui[2p− 1], Ui[2p]) =

{
(2p− 1, 2p) if ui[p] = 0,

(2p− 1, 2p− 1) if ui[p] = 1,

(Vi[2p− 1], Vi[2p]) =

{
(2p, 2p− 1) if vi[p] = 0,

(2p, 2p) if vi[p] = 1.

Observe that at most one of the elements 2p− 1 and 2p may appear in the LCIS of Ui and Vj , and it
happens if and only if ui[p] and vj [p] are not both equal to one. Therefore, lcis(Ui, Vj) = d − (ui · vj),
and, in particular, lcis(Ui, Vj) = d if and only if ui and vj are orthogonal.

3.4 Final construction

To put all the pieces together, we plug vector gadgets Ui and Vj into the separator sequences from Section
3.2, obtaining two sequences whose LCIS depends on the minimal inner product of vectors ui and vj . We
provide a general construction of such sequences, which will be useful in later sections.

Lemma 15. Let X0, X1, . . . , Xn−1, Y0, Y1, . . . , Yn−1 be integer sequences such that none of them has
an increasing subsequence longer than δ. Then there exist sequences X and Y of length O (δ · n log n) +∑
|Xi|+

∑
|Yj |, constructible in linear time, such that:

lcis(X,Y ) = max
i,j

lcis(Xi, Yj) + C

for a constant C that only depends on n and δ and is O (nδ).

Proof. We can assume that n = 2k for some positive integer k, adding some dummy sequences if necessary.
Recall the sequences Ak, Bk, Âk and B̂k constructed in Section 3.2. Let A,B, Â, B̂ be the sequences
obtained from Ak, Bk, Âk, B̂k by applying inflation dlog2 δe times (thus increasing their length by a factor
of ` = 2dlog2 δe > δ). Each of these four sequences splits into (now inflated) blocks, e.g. A = α0α1 . . . αn−1,

where αi = inflatedlog2 δe(αik).
We subtract from A and B a constant large enough for all their elements to be smaller than all

elements of every Xi and Yj . Similarly, we add to A′ and B′ a constant large enough for all their elements
to be larger than all elements of every Xi and Yj . Now, we can construct the sequences X and Y as
follows:

X = α0X0α̂0α1X1α̂1 . . . αn−1Xn−1α̂n−1,

Y = β0Y0β̂0β1Y1β̂1 . . . βn−1Yn−1β̂n−1.

8



We claim that
lcis(X,Y ) = ` · (4n− 2) +M , where M = max

i,j
lcis(Xi, Yj).

LetXi and Yj be the pair of sequences achieving lcis(Xi, Yj) = M . Recall that lcis(α0 . . . αi, β0 . . . βj) =
` · (i+ j + n), with all the elements of this common subsequence preceding the elements of Xi and Yj
in X and Y , respectively, and being smaller than them. In the same way lcis(α̂i . . . α̂n−1, β̂j . . . β̂n−1) =
` · (2 · (n− 1)− (i+ j) + n) with all the elements of LCIS being greater and appearing later than those of
Xi and Yj . By concatenating these three sequences we obtain a common increasing subsequence of X
and Y of length ` · (4n− 2) +M .

It remains to prove lcis(X,Y ) 6 ` · (4n− 2) +M . Let L be any common increasing subsequence of
X and Y . Observe that L must split into three (some of them possibly empty) parts L = SGŜ with S
consisting only of elements of A and B, G – only elements of Xi and Yj , and Ŝ – elements of Â and B̂.

Let x be the last element of S and x̂ the first element of Ŝ. We know that x belongs to some blocks
αi of A and βj of B, and x̂ belongs to some blocks α̂î of Â and β̂ĵ of B̂. Obviously i 6 î and j 6 ĵ. By

Lemma 14 and inflation properties we have |S| 6 ` · (i+ j + n) and |Ŝ| 6 ` · (2 · (n− 1)− (̂i+ ĵ) + n). We
consider two cases:

Case 1. If i = î and j = ĵ, then G may only contain elements of Xi and Yj . Therefore

|L| 6 |S|+ lcis(Xi, Yj) + |Ŝ| 6 ` · (4n− 2) +M.

Case 2. If i < î or j < ĵ, then G must be a strictly increasing subsequence of both Xi ◦ · · · ◦Xî and
Yj ◦ · · · ◦ Yĵ therefore its length can be bounded by

|G| 6 min(δ · (̂i− i+ 1), δ · (ĵ − j + 1)) 6 ` · (min(̂i− i, ĵ − j) + 1) 6

6 ` · (min(̂i− i, ĵ − j) + max(̂i− i, ĵ − j)) = ` · (̂i− i+ ĵ − j).

On the other hand, |S|+ |Ŝ| 6 ` · (4n− 2− (̂i− i)− (ĵ − j)). From that we obtain |L| 6 ` · (4n− 2), as
desired.

We are ready to prove the main result of the paper.

Proof of Theorem 3. Let U = {u0, . . . , un−1}, V = {v0, . . . , vn−1} be two sets of d-dimensional binary
vectors. In Section 3.3 we constructed vector gadgets Ui and Vj , for i, j ∈ {0, 1, . . . , n − 1}, such that
lcis(Ui, Vj) = d− (ui · vj). To these sequences we apply Lemma 15, with δ = 2d, obtaining sequences X
and Y of length O (n log npoly(d)) such that lcis(X,Y ) = C + d−mini,j(ui · vj) for a constant C. This
reduction, combined with an O

(
n2−ε) time algorithm for LCIS, would yield an O

(
n2−εpolylog(n)poly(d)

)
algorithm for OV, refuting Hypothesis 10 and, in particular, SETH.

With the reduction above, one can not only determine whether there exist a pair of orthogonal vectors
or not, but also, in the latter case, calculate the minimum inner product over all pairs of vectors. Formally,
by the above construction, we can reduce even the Most Orthogonal Vectors problem, as defined in
Abboud et al. [1] to LCIS. This bases hardness of LCIS already on the inability to improve over exhaustive
search for the MAX-CNF-SAT problem, which is a slightly weaker conjecture than SETH.

4 Matching Lower Bound for Output-Dependent Algorithms

To prove our bivariate conditional lower bound of (nL)1−o(1), we provide a reduction from an OV instance
with unequal vector set sizes.

Proof of Theorem 4. Let 0 < γ 6 1 be arbitrary and consider any OV instance with sets U ,V ⊆ {0, 1}d
with |U| = n, |V| = m = nγ and d = no(1). We reduce this problem, in linear time in the output size, to
an LCIS instance with sequences X and Y satisfying |X| = |Y | = O (nd log n) and an LCIS of length
O (nγd). Theorem 4 is an immediate consequence of the reduction: an O

(
(nL)1−ε) time LCIS algorithm

would yield an OV algorithm running in time O
(
n1+γ−ε′

)
, which would refute Hypothesis 10 and, in

particular, SETH.

9



It remains to show the reduction itself. Let U = {u0, . . . , un−1} and V = {v0, . . . , vm−1} be two sets
of d-dimensional (0, 1)-vectors. By adding dummy vectors, we can assume without loss of generality that
n = q ·m for some integer q.

We use the vector gadgets Ui and Vj from Section 3.4. This time, however, we group together

every q consecutive gadgets, i.e., (U0, . . . , Uq−1), (Uq, . . . , U2q−1), and so on. Specifically, let U
[r]
i be the

i-th vector gadget shifted by an integer r (i.e. with r added to all its elements). We define, for each
l ∈ {0, 1, . . . ,m− 1},

Ūl = U
[2qd]
lq U

[2qd−2d]
lq+1 . . . U

[2d]
lq+q−1.

In a similar way, for j ∈ {0, 1, . . . ,m− 1}, we replicate every Vj gadget q times with appropriate shifts,
i.e.,

V̄j = V
[2qd]
j V

[2qd−2d]
j . . . V

[2d]
j .

Let us now determine lcis(Ūl, V̄j). No two gadgets grouped in Ūl can contribute to an LCIS together,
as the later one would have smaller elements. Therefore, only one Ui gadget can be used, paired with the
one copy of Vj having the matching shift. This yields lcis(Ūl, V̄j) = maxlq6i<lq+q lcis(Ui, Vj), and in turn,
also maxl,j lcis(Ūl, V̄j) = maxi,j lcis(Ui, Vj) = d−mini,j(ui · vj).

Observe that every Ūl is a concatenation of several Ui gadgets, each one shifted to make its elements
smaller than previous ones. Therefore, any increasing subsequence of Ūl must be contained in a single Ui,
and thus cannot be longer than 2d. The same argument applies to every V̄j . Therefore, we can apply
Lemma 15, with δ = 2d, to these sequences, obtaining X̄ and Ȳ satisfying:

lcis(X̄, Ȳ ) = C + d−min
i,j

(ui · vj).

Recall that C is some constant dependent only on m and d, and C = O (md). The length of both X̄
and Ȳ is O (dm logm+mqd) = O (nd log n), and the length of the output is O (md), as desired.

5 Hardness of k-LCIS

In this section we show that, assuming SETH, there is no O
(
nk−ε

)
algorithm for the k-LCIS problem,

i.e., we prove Theorem 5. To obtain this lower bound we show a reduction from the k-Orthogonal Vectors
problem (for definition, see Section 2). There are two main ingredients of the reduction, i.e. separator
sequences and vector gadgets, and both of them can be seen as natural generalizations of those introduced
in Section 3.

5.1 Generalizing separator sequences

Please note that in this section we use a notation which is not consistent with the one from Section 3,
because it has to accommodate indexing over k sequences.

The aim of this section is to show, for any N that is a power of two, how to construct k sequences
A1, A2, . . . , Ak such that each of them can be split into N blocks, i.e. Ai = α0

iα
1
i . . . α

N−1
i , and for any

choice of j1, j2, . . . , jk ∈ {0, 1, . . . , N − 1}

lcis(α0
1 . . . α

j1
1 , α

0
2 . . . α

j2
2 , . . . , α

0
k . . . α

jk
k ) = j1 + j2 + · · ·+ jk +N. (2)

As before, we construct separator sequences inductively, doubling the number of blocks in each step.
Again, for N = 1, we define the sequences by Ai = 〈1〉 , i ∈ {1, . . . , k}.

Suppose we have N -block sequences A1, A2, . . . , Ak, Ai = α0
iα

1
i . . . α

N−1
i as above. We show how to

construct 2N -block sequences B1, B2, . . . , Bk, Bi = β0
i β

1
i . . . β

2N−1
i . Note that inflation properties still

hold for k sequences, as the proof of Lemma 12 works in exactly the same way, i.e. inflating all the
sequences increases their LCIS by a factor of 2.

To obtain Bi, we first inflate Ai, and then append a tail gadget after each block αji . However, tail
gadgets are now more involved.

Let s denote the largest element appearing in A1, A2, . . . , Ak. Then the blocks of Bi are

β2j
i = inflate(αji ) ◦ T

0
i , β2j+1

i = T 1
i ,

10



where T 0
i is the sorted sequence of numbers of the form 2s+ x for x ∈

{
1, . . . , 2k − 1

}
such that the i-th

bit in the binary representation of x equals 0, while T 1
i contains those with i-th bit set to 1. Note that

for k = 2 this exactly leads to the construction from Section 3.
During one construction step, every block doubles its size, and constant number of elements (precisely,

2k − 1) is added for every original block. Therefore, the length L(N) of N -block sequences satisfies the
recursive equation:

L(2N) = 2 · L(N) + (2k − 1) ·N
which yields L(N) = O (N logN). Note also that the size of the alphabet S(N) used in N -block sequences
gives the equation S(2N) = 2S(N) + 2k − 1, as a constant number of elements is added in every step.
Therefore S(N) = O (N).

Lemma 16. The constructed sequences satisfy, for any j1, j2, . . . , jk ∈ {0, 1, . . . , 2N − 1},

lcis(β0
1 . . . β

j1
1 , β

0
2 . . . β

j2
2 , . . . , β

0
k . . . β

jk
k ) = j1 + j2 + · · ·+ jk + 2N,

Proof. We prove the claim by induction on j1 + j2 + · · ·+ jk. In fact, to make the induction work, we need
to prove a stronger statement that there always exists a corresponding LCIS that ends on an element less
than or equal to 2s+ x(j1, . . . , jk), where x(j1, . . . , jk) is the integer given by the binary representation
(j1 mod 2, . . . , jk mod 2).

By the inflation properties and the observation that T 0
1 , . . . , T

0
k have no common elements, we obtain

the base case lcis(β0
1 , . . . , β

0
k) = 2 · lcis(α0

1, . . . , α
0
k) = 2N , with a corresponding LCIS using only elements

bounded by 2s, as desired.
Let j1, j2, . . . , jk be indices with j1+· · ·+jk > 0. Let us first construct a common increasing subsequence

of length at least j1 + · · ·+ jk + 2N . If all indices j1, . . . , jk are even, then, for every i ∈ {1, . . . , k}, the

prefix β0
i . . . β

ji
i contains inflate(α0

i . . . α
ji/2
i ) as a subsequence. Thus we can find, by inflation properties, a

common increasing subsequence of length 2·(j1/2+· · ·+jk/2+N) = j1+· · ·+jk+2N , as desired. Now, let
ji be any odd index, and let L be the LCIS of the prefixes corresponding to j1, . . . , ji−1, ji−1, ji+1, . . . , jk,
which ends on an element bounded by x(j1, . . . , ji−1, 0, ji+1, . . . , jk), of length j1 + · · ·+jk+2N−1 (which
exists by the induction hypothesis). Then L ◦ x(j1, . . . , ji−1, 1, ji+1, . . . , jk) is an LCIS for the prefixes

corresponding to j1, . . . , jk: Indeed, 2s+ x(j1, . . . , jk) is a common member of T j1 mod 2
1 , . . . , T jk mod 2

k ,
the last parts of these prefixes, and this element is larger and appears later in the sequences than all
elements in L (since all T ji ’s are sorted in the increasing order).

For the converse, let L denote the LCIS of β0
1 . . . β

j1
1 , β0

2 . . . β
j2
2 , . . ., β0

k . . . β
jk
k . Note that if the last

symbol of L does not come from the last blocks, i.e. βj11 , β
j2
2 , . . . , β

jk
k , then L is an LCIS of prefixes

corresponding to some j′1, . . . , j
′
k with j′1 + · · ·+ j′k < j1 + · · ·+ jk and the claim follows from the induction

hypotheses. Thus, we may assume that L ends on a common symbol of the last blocks.
If all the indices are even, the last blocks share only elements less than or equal to 2s (since T 0

1 , . . . , T
0
k

share no elements), thus L is the LCIS of inflate(α0
i , . . . , α

ji/2
i ), i ∈ {1, . . . , k} and the claim follows from

the inflation properties. Otherwise, the only element the last blocks have in common is x(j1, j2, . . . , jk),
and thus L = L′ ◦ x(j1, . . . , jk), where L′ is the LCIS of prefixes corresponding to some j′1, . . . , j

′
k with

j′1 + · · ·+ j′k < j1 + · · ·+ jk. Thus, |L| 6 j′1 + · · ·+ j′k + 2N + 1 6 j1 + · · ·+ jk + 2N , as desired.

5.2 Generalizing vector gadgets

Each vector gadget is the concatenation of coordinate gadgets. Coordinate gadgets for j-th coordinate use
elements from the range {kj + 1, . . . , kj + k}. If a coordinate is 0, the corresponding gadget contains all
k elements sorted in decreasing order, otherwise the gadget for the i-th sequence skips the kj + i element.
Formally,

VGi(u) = CG0
i (u[0]) ◦ CG1

i (u[1]) ◦ · · · ◦ CGd−1
i (u[d− 1]),

where

CGj
i (0) = 〈kj + k, kj + (k − 1), . . . , kj + 1〉 ,

CGj
i (1) = 〈kj + k, kj + (k − 1), . . . , kj + (i+ 1), kj + (i− 1), . . . , kj + 1〉 .

Thus, if all k vectors have the j-th coordinate equal 1, there is no common element in the corresponding
gadgets. Otherwise, if at least one, say i-th, vector has the j-th coordinate equal 0, the element kj + i

11



appears in all coordinate gadgets. Since the coordinate gadgets are sorted in decreasing order, their LCIS
cannot exceed 1. Therefore,

lcis(CGj
1(u1),CGj

2(u2), . . . ,CGj
k(uk)) = 1−

k∏
i=1

ui[j],

and ultimately

lcis(VG1(u1),VG2(u2), . . . ,VGk(uk)) = d−
d−1∑
j=0

k∏
i=1

ui[j].

5.3 Putting pieces together

We can finally prove our lower bound for k-LCIS, i.e., Theorem 5.

Proof of Theorem 5. Let U1, . . . ,Uk ⊆ {0, 1}d be a k-OV instance with |Ui| = n. By at most doubling
the number of vectors in each set, we may assume without loss of generality that n is a power of two.

We construct separator sequences consisting of n blocks. Inflate the sequences dlog2 kde times, thus
increasing their length by a factor ` = 2dlog2 kde, and subtract from all their elements a constant large
enough for them to become smaller than all elements of vector gadgets. Let Ai = α0

i . . . α
n−1
i denote the

thus constructed separator sequence corresponding to set Ui.
Analogously (and as in the proof of Theorem 3), construct, for each i ∈ {1, . . . , k}, the separator

sequence Âi = α̂0
i , . . . , α̂

n−1
i by reversing Ai, replacing each element by its additive inverse, and adding a

constant large enough to make all the elements larger than vector gadgets (note that each α̂ji equals the

reverse of αn−j−1
i , with negated elements, shifted by an additive constant). In this way, the analogous

property to Equation (2) holds for suffixes instead of prefixes.
Finally, construct sequences X1, X2, . . . , Xk by defining

Xi = α0
iVGi(u

0
i )α̂

0
iα

1
iVGi(u

1
i )α̂

1
i . . . α

n−1
i VGi(u

n−1
i )α̂n−1

i ,

where the VGi are defined as in Section 5.2. It is straightforward to rework the proof of Theorem 3 to
verify that these sequences fulfill

lcis(X1, X2, . . . , Xk) = ` · (k · (n− 1) + 2n) + d−m,

where m = minu1∈U1,u2∈U2,...,uk∈Uk
∑d−1
j=0

∏k
i=1 ui[j].

By this reduction, an O
(
nk−ε

)
time algorithm for k-LCIS would yield an O

(
nk−ε

′
)

time k-OV

algorithm (for any dimension d = no(1)), thus refuting Hypothesis 9 and, in particular, SETH.

6 Hardness of k-LCWIS

We shortly discuss the proof of Theorem 6.

Proof sketch of Theorem 6. Note that our lower bound for k-LCIS almost immediately yields a lower
bound for k-LCWIS: Trivially, each common increasing subsequence of X1, . . . , Xk is also a common
weakly increasing subsequence. The claim then follows after carefully verifying that, in the constructed
sequences, we cannot obtain longer common weakly increasing subsequences by reusing some symbols.

Our claim for k-LCWIS is slightly stronger, however. In particular, we aim to reduce the size of the
alphabet over which all the sequences are defined. For this, the key insight is to replace the inflation
operation inflate(〈a0, . . . , an−1〉) = 〈2a0 − 1, 2a0, . . . , 2an−1 − 1, 2an−1〉 by

inflate′(〈a0, . . . , an−1〉) = 〈a0, a0, . . . , an−1, an−1〉 ,

which does not increase the alphabet size, but still satisfies the desired property for k-LCWIS.
Replacing this notion in the proof of Theorem 5, we obtain final sequences X1, . . . , Xk by combining

separator gadgets over alphabets of size O (log n) with vector gadgets over alphabets of size O (d), where
d is the dimension of the vectors in the k-OV instance. Correctness of this construction under k-LCWIS
can be verified by reworking the proof of Theorem 5. Thus, we construct hard k-LCWIS instances over
an alphabet of size O (log n+ d), and the claim follows.

12



7 Strengthening the Hardness

In this section we show that a natural combination of constructions proposed in the previous sections
with the idea of reachability gadgets introduced by Abboud et al. [2] lets us strengthen our lower bounds
to be derived from considerably weaker assumptions than SETH. Before we do this, we first need to
introduce the notion of branching programs.

A branching program of width W and length T on N Boolean input variables x1, x2, . . . , xN ∈ {0, 1}
is a directed acyclic graph on W · T nodes, arranged into T layers of size W each. A node in the k-th
layer may have outgoing edges only to the nodes in the (k + 1)-th layer, and for every layer there is a
variable xi such that every edge leaving this layer is labeled with a constraint of the from xi = 0 or xi = 1.
There is a single start node in the first layer and a single accept node in the last layer. We say that the
branching program accepts an input x ∈ {0, 1}N if there is a path from the start node to the accept node
which uses only edges that are labeled with constraints satisfied by the input x.

The expressive power of branching programs is best illustrated by the theorem of Barrington [12].
It states that any depth-d fan-in-2 Boolean circuit can be expressed as a branching program of width
5 and length 4d. In particular, NC-circuits can be expressed as constant width quasipolynomial length
branching programs.

Given a branching program P on N input variables, the Branching Program Satisfiability problem
(BP-SAT) asks if there exists an assignment x ∈ {0, 1}N such that P accepts x. Abboud et al. [2]
gave a reduction from BP-SAT to LCS (and some other related problems, such as Edit Distance) on
two sequences of length 2N/2 · TO(logW ). The reduction proves that a strongly subquadratic algorithm
for LCS would imply, among others, exponential improvements over exhaustive search for satisfiability
problems not only on CNF formulas (i.e. refuting SETH), but even NC-circuits and circuits representing
o (
√
n)-space nondeterministic Turing machines. Moreover, even a sufficiently large polylogarithmic

improvement would imply nontrivial results in circuit complexity. We refer to the original paper [2] for
an in-depth discussion of these consequences.

In this section we prove Theorem 7 and thus show that a subquadratic algorithm for LCIS would
have the same consequences. Our reduction from OV to LCIS (presented in Section 3) is built of two
ingredients: (1) relatively straightforward vector gadgets, encoding vector inner product in the language
of LCIS, and (2) more involved separator sequences, which let us combine many vector gadgets into a
single sequence. In order to obtain a reduction from BP-SAT we will need to replace vector gadgets with
more complex reachability gadgets. Fortunately, reachability gadgets for LCIS can be constructed in a
similar manner as reachability gadgets for LCS proposed in [2].

Proof sketch of Theorem 7. Given a branching program, as in [2], we follow the split-and-list technique
of Williams [44]. Assuming for ease of presentation that N is even, we split the input variables into two
halves: x1, . . . , xN/2 and xN/2+1, . . . , xN . Then, for each possible assignment a ∈ {0, 1}N/2 of the first

half we list a reachability gadget RGx(a), and similarly, for each possible assignment b ∈ {0, 1}N/2 of the
second half we list a reachability gadget RGy(b). We shall define the gadgets such that there exists a
constant C (depending only on the branching program size) such that lcis(RGx(a),RGy(b)) = C if and
only if a◦ b is an assignment accepted by the branching program, and otherwise lcis(RGx(a),RGy(b)) < C.
The reduction is finished by applying Lemma 15 to the constructed gadgets in order to obtain two
sequences such that their LCIS lets us determine whether a satisfying assignment to the branching
program exists. The rest of the proof is devoted to constructing suitable reachability gadgets.

We assume without loss of generality that T = 2t + 1 for some integer t. For every k ∈ {0, 1, . . . , t}
and for every two nodes u, v being 2k layers apart from each other we want to construct two reachability
gadgets RGu→v

x and RGu→v
y such that, for some constant Ck,

lcis(RGu→v
x (a),RGu→v

y (b))

{
= Ck if there is a path from u to v satisfied by a ◦ b,
< Ck otherwise,

holds for all a, b ∈ {0, 1}N/2.
Consider k = 0, i.e., designing reachability gadgets for nodes in neighboring layers Lj and Lj+1. There

is a variable xi such that all edges between Lj and Lj+1 are labeled with a constraint xi = 0 or xi = 1.
We say the left half is responsible for xi if xi is among the first half x1, . . . , xN/2 of variables; otherwise,
we say the right half is responsible for xi. We set RGu→v

x (a) to be an empty sequence if the left half is

13



responsible for xi and there is no edge from u to v labeled xi = ai; otherwise, we set RGu→v
x (a) = 〈0〉.

Similarly, RGu→v
y (b) is an empty sequence if the right half is responsible and there is no edge from u to v

labeled with xi = bi−N/2; otherwise RGu→v
y (b) = 〈0〉. It is easy to verify that such reachability gadgets

satisfy the desired property for C0 = 1.
For k > 0, let w1, w2, . . . wW be the nodes in the layer exactly halfway between u and v. Observe that

there exists a path from u to v if and only if there exists a path from u to wi and from wi to v for some
i ∈ {1, 2, . . . ,W}.

Let RG
wi→v
x and RG

wi→v
y denote the sequences RGwi→v

x and RGwi→v
y with every element increased

by a constant large enough so that all elements are larger than all elements of RGu→wi
x and RGu→wi

y .
Observe that lcis(RGu→wi

x (a) ◦ RG
wi→v
x (a),RGu→wi

y (b) ◦ RG
wi→v
y (b)) equals 2 · Ck−1 if there is a path

u  wi  v satisfied by a ◦ b, and otherwise it is less than 2 · Ck−1. Now, for every i take a different
constant qi and add it to both RGu→wi

x ◦ RG
wi→v
x and RGu→wi

y ◦ RG
wi→v
y so that their alphabets are

disjoint, and therefore, for i 6= j, lcis((RGu→wi
x (a) ◦RG

wi→v
x (a)) + qi, (RG

u→wj
y (b) ◦RG

wj→v
y (b)) + qj) = 0

(where + denotes element-wise addition). Finally, apply Lemma 15 to these W pairs of concatenated
reachability gadgets (where we choose δ as the maximum length of these gadget) to obtain two reachability
gadgets RGu→v

x and RGu→v
y such that lcis(RGu→v

x (a),RGu→v
y (b)) equals C + 2 · Ck−1 (for a constant C

resulting from the application of Lemma 15) if there exists (for some i ∈ {1, 2, . . . ,W}) a path u wi  v
satisfied by a ◦ b, and is strictly smaller otherwise, as desired.

Let ustart and uaccept denote the start node and the accept node of the branching program. Then,
RGx = RG

ustart→uaccept
x and RGy = RG

ustart→uaccept
y satisfy the property that

lcis(RGx(a),RGy(b))

{
= Ct if the branching program accepts a ◦ b,
< Ct otherwise.

Since RGx(a) and RGy(b) are constructed in t steps of the inductive construction, and each step
increases the length of gadgets by a factor of O (W logW ), their final length can be bounded by
O ((W logW )t), which is TO(logW ). Combining the reachability gadgets RGx(a), a ∈ {0, 1}N/2 and
RGy(b), b ∈ {0, 1}N/2 using Lemma 15 (where we choose δ as the maximum length of the reachability
gadgets) yields the desired strings X,Y of length 2N/2 · N · TO(logW ) whose LCIS lets us determine
satisfiability of the given branching program, thus finishing the proof.

Similar techniques can be used to analogously strengthen other lower bounds in our paper.

8 Conclusion and Open Problems

We prove a tight quadratic lower bound for LCIS, ruling out strongly subquadratic-time algorithms under
SETH. It remains open whether LCIS admits mildly subquadratic algorithms, such as the Masek-Paterson
algorithm for LCS [36]. Note, however, that our reduction from BP-SAT gives an evidence that shaving
many logarithmic factors is immensely difficult. Finally, we give tight SETH-based lower bounds for
k-LCIS.

For the related variant LCWIS that considers weakly increasing sequences, strongly subquadratic-time
algorithms are ruled out under SETH for slightly superlogarithmic alphabet sizes ([40] and Theorem 6). On
the other hand, for binary and ternary alphabets, even linear time algorithms exist [35, 24]. Can LCWIS
be solved in time O

(
n2−f(|Σ|)) for some decreasing function f that yields strongly subquadratic-time

algorithms for any constant alphabet size |Σ|?
Finally, we can compute a (1 + ε)-approximation of LCIS in O

(
n3/2ε−1/2polylog(n)

)
time by an easy

observation (see the appendix). Can we improve upon this running time or give a matching conditional
lower bound? Note that a positive resolution seems difficult by the reduction in Observation 1: Any nα,
α > 0, improvement over this running time would yield a strongly subcubic (1 + ε)-approximation for 3-
LCS, which seems hard to achieve, given the difficulty to find strongly subquadratic (1 + ε)-approximation
algorithms for LCS.

14



References

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Quadratic-time hardness of LCS
and other sequence similarity measures. In Proc. 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’15), pages 59–78, 2015.

[2] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams. Sim-
ulating branching programs with edit distance and friends or: A polylog shaved is a lower bound
made. In Proc. 48th Annual ACM Symposium on Symposium on Theory of Computing (STOC’16),
2016. To appear.

[3] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment
of sequences. In Proc. of 41st International Colloquium on Automata, Languages, and Programming
(ICALP’14), pages 39–51, 2014.

[4] Alfred V. Aho, Daniel S. Hirschberg, and Jeffrey D. Ullman. Bounds on the complexity of the longest
common subsequence problem. Journal of the ACM, 23(1):1–12, 1976.

[5] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman. Basic
local alignment search tool. Journal of Molecular Biology, 215(3):403 – 410, 1990.

[6] Hsing-Yen Ann, Chang-Biau Yang, and Chiou-Ting Tseng. Efficient polynomial-time algorithms
for the constrained LCS problem with strings exclusion. Journal of Combinatorial Optimization,
28(4):800–813, 2014.

[7] Alberto Apostolico and Concettina Guerra. The longest common subsequence problem revisited.
Algorithmica, 2(1):316–336, 1987.

[8] Abdullah N. Arslan and Ömer Egecioglu. Algorithms for the constrained longest common subsequence
problems. International Journal of Foundations of Computer Science, 16(6):1099–1109, 2005.

[9] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless SETH is false). In Proc. 47th Annual ACM Symposium on Theory of Computing (STOC’15),
pages 51–58, 2015.

[10] Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In Proc.
57th Annual Symposium on Foundations of Computer Science, (FOCS’16), pages 457–466, 2016.

[11] Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better runtimes imply faster clique
algorithms. In Proc. 34th International Conference on Machine Learning (ICML’17), 2017. To
appear.

[12] David A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages in NC1. Journal of Computer and System Sciences, 38(1):150–164, 1989.

[13] Gary Benson, Avivit Levy, S. Maimoni, D. Noifeld, and B. Riva Shalom. Lcsk: A refined similarity
measure. Theoretical Computer Science, 638:11–26, 2016.

[14] Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest common subsequence algorithms.
In Proc. 7th International Symposium on String Processing and Information Retrieval (SPIRE’00),
pages 39–48, 2000.

[15] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic
algorithms unless SETH fails. In Proc. 55th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’14), pages 661–670, 2014.

[16] Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string problems
and dynamic time warping. In Proc. 56th Annual IEEE Symposium on Foundations of Compu ter
Science (FOCS’15), pages 79–97, 2015.

[17] Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest common
subsequence. 2017. Unpublished Manuscript.

15



[18] Wun-Tat Chan, Yong Zhang, Stanley P. Y. Fung, Deshi Ye, and Hong Zhu. Efficient algorithms
for finding a longest common increasing subsequence. Journal of Combinatorial Optimization,
13(3):277–288, 2007.

[19] Yi-Ching Chen and Kun-Mao Chao. On the generalized constrained longest common subsequence
problems. Journal of Combinatorial Optimization, 21(3):383–392, 2011.

[20] Francis Y. L. Chin, Alfredo De Santis, Anna Lisa Ferrara, N. L. Ho, and S. K. Kim. A simple
algorithm for the constrained sequence problems. Information Processing Letters, 90(4):175–179,
2004.

[21] Vaclav Chvatal, David A. Klarner, and Donald E. Knuth. Selected combinatorial research problems.
Technical Report CS-TR-72-292, Stanford University, Department of Computer Science, 6 1972.

[22] Maxime Crochemore and Ely Porat. Fast computation of a longest increasing subsequence and
application. Information & Computation, 208(9):1054–1059, 2010.

[23] Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems equivalent
to (min,+)-convolution. In Proc. 44th International Colloquium on Automata, Languages, and
Programming (ICALP’17), 2017. To appear.

[24] Lech Duraj. A linear algorithm for 3-letter longest common weakly increasing subsequence. Infor-
mation Processing Letters, 113(3):94–99, 2013.

[25] Michael L. Fredman. On computing the length of longest increasing subsequences. Discrete
Mathematics, 11(1):29–35, 1975.

[26] Zvi Gotthilf, Danny Hermelin, Gad M. Landau, and Moshe Lewenstein. Restricted LCS. In Proc.
17th International Symposium on String Processing and Information Retrieval (SPIRE’10), pages
250–257, 2010.

[27] Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. Journal of the ACM,
24(4):664–675, 1977.

[28] J. W. Hunt and M. D. McIlroy. An algorithm for differential file comparison. Computing Science
Technical Report 41, Bell Laboratories, 1975.

[29] James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest subsequences.
Communications of the ACM, 20(5):350–353, 1977.

[30] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of Computer
and System Sciences, 62(2):367–375, 2001.

[31] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponen-
tial complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

[32] Guy Jacobson and Kiem-Phong Vo. Heaviest increasing/common subsequence problems. In Combi-
natorial Pattern Matching, Third Annual Symposium, CPM 92, Tucson, Arizona, USA, April 29 -
May 1, 1992, Proceedings, pages 52–66, 1992.

[33] Tao Jiang, Guohui Lin, Bin Ma, and Kaizhong Zhang. The longest common subsequence problem
for arc-annotated sequences. Journal of Discrete Algorithms, 2(2):257 – 270, 2004.

[34] Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the Fine-grained Complexity
of One-Dimensional Dynamic Programming. In Proc. 44th International Colloquium on Automata,
Languages, and Programming (ICALP’17), 2017. To appear.

[35] Martin Kutz, Gerth Stølting Brodal, Kanela Kaligosi, and Irit Katriel. Faster algorithms for
computing longest common increasing subsequences. Journal of Discrete Algorithms, 9(4):314–325,
2011.

[36] William J. Masek and Mike Paterson. A faster algorithm computing string edit distances. Journal
of Computer and System Sciences, 20(1):18–31, 1980.

16



[37] Howard L. Morgan. Spelling correction in systems programs. Communications of the ACM, 13(2):90–
94, 1970.

[38] Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1(2):251–266,
1986.

[39] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443 –
453, 1970.

[40] Adam Polak. Why is it hard to beat O(n2) for longest common weakly increasing subsequence?
CoRR, abs/1703.01143, 2017.

[41] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter
and radius of sparse graphs. In Proc. 45th Annual ACM Symposium on Symposium on Theory of
Computing (STOC’13), pages 515–524, 2013.

[42] Yin-Te Tsai. The constrained longest common subsequence problem. Information Processing Letters,
88(4):173–176, 2003.

[43] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. Journal of the
ACM, 21(1):168–173, 1974.

[44] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical
Computer Science, 348(2):357–365, 2005.

[45] Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular conjectures
such as the strong exponential time hypothesis (invited talk). In Proc. 10th International Symposium
on Parameterized and Exact Computation (IPEC’15), pages 17–29, 2015.

[46] I-Hsuan Yang, Chien-Pin Huang, and Kun-Mao Chao. A fast algorithm for computing a longest
common increasing subsequence. Information Processing Letters, 93(5):249–253, 2005.

[47] Daxin Zhu, Lei Wang, Tinran Wang, and Xiaodong Wang. A simple linear space algorithm for
computing a longest common increasing subsequence. CoRR, abs/1608.07002, 2016.

17



Appendix

Theorem 17 (folklore, generalization of [47]). For any k > 2, LCIS of k sequences of length n can be
computed in O

(
nk
)

time.

Proof. Let X1, X2, . . . Xk be the input sequences. Let X[0 : i] denote the prefix consisting of first i
elements of X, with X[0 : 0] being the empty prefix. Now, for every i1, . . . , ik ∈ {0, 1, . . . , n} we define
R[i1, . . . , ik] to be the length of the LCIS of the prefixes X1[0 : i1], X2[0 : i1], . . . , Xk[0 : ik] with an
additional assumption that this common subsequence must end with the element Xk[ik], i.e. the last
element of the last prefix. Observe that it is enough to compute all R[i1, . . . , ik], with the desired answer
being simply max06ik6nR[n, . . . , n, ik].

The algorithm is based on the fact that R[i1, . . . , ik] satisfies the following two-case recurrence:

• Case 1. If Xk[ik] 6= Xs[is] for some s < k, the desired common subsequence ends with Xk[ik] and
thus it cannot contain Xs[is], so R[i1, . . . , is, . . . , ik] = R[i1, . . . , is − 1, . . . , ik].

• Case 2. If X1[i1] = . . . = Xk[ik], let us call this common symbol σ, and observe that σ is the
last element of LCIS. Consider the next-to-last element: it must be certainly smaller than σ, and
must appear in the Xk sequence at a position earlier than at Xk[ik]. Therefore R[i1, . . . , ik] =
1 + maxj<ik,Xk[j]<σ R[i1 − 1, . . . , ik−1 − 1, j].

To obtain the values of R in O
(
nk
)

time, the algorithm iterates through all possible i1, . . . , ik with
the ik loop being the innermost one. Obviously, R[i1, . . . , ik] = 0 if any of the indices is 0. Before every
innermost ik loop, with fixed i1, i2, . . . , ik−1, the algorithm checks whether X1[i1] = . . . = Xk−1[ik−1]. If
so, it sets σ = X1[i1] = . . . = Xk−1[ik−1], otherwise σ = null.

If σ 6= null, for every 1 6 i 6 n let D[i] = maxj<i,Xk[j]<σ R[i1 − 1, . . . , ik−1 − 1, j]. Observe that D[i]
can be obtained from D[i− 1] and R[i1 − 1, . . . , ik−1 − 1, i− 1] in constant time. Therefore, before the
start of the ik loop, the algorithm can precompute all the D[i] values in O (n) time, as all the needed
R[i1 − 1, . . . , ik−1 − 1, i] values are already known from earlier iterations.

Throughout the ik loop the algorithm checks if Xk[ik] = σ, which corresponds to Case 2 above.
If so, then R[i1, . . . , ik] = 1 + maxj<ik,Xk[j]<σ R[i1 − 1, . . . , ik−1 − 1, j] = 1 + D[ik], which is already
precomputed. If Case 1 holds, then R[i1, . . . , is, . . . , ik] = R[i1, . . . , is − 1, . . . , ik] for some s < k. As the
index s is easy to find, and the necessary values in R have been computed earlier, this step also works in
constant time (assuming k is fixed).

The above algorithm computes only the length of LCIS. However, it can be easily modified to
reconstruct the sequence, using the common dynamic programming techniques (e.g. by storing with every
value in R a link to the previous element of LCIS).

Theorem 18. A (1 + ε)-approximation of LCIS of sequences X,Y of length n can be computed in
O
(
n3/2ε−1/2polylog(n)

)
time.

Proof. First, delete all integers occurring more than 2
√
n/ε times in total in both of the sequences. Since

there are at most
√
nε such integers, this operation decreases the length of the LCIS by at most

√
nε. In

the resulting instance, there are at most n3/2ε−1/2 matching pairs, i.e., indices i, j with X[i] = Y [j]. Thus,
the exact LCIS in this instance can be computed in time O

(
n3/2ε−1/2 log n log log n

)
using an algorithm

of Chan et al. [18] running in time O (M logL log log n+ n log n), where L is the length of the LCIS of
X and Y and M is the number of matching pairs. Now, consider two cases. If the algorithm returns a
solution Z longer than

√
n/ε, then Z is a (1 + ε)-approximation of the LCIS of the original instance,

since the LCIS is bounded by L 6 |Z|+
√
nε 6 (1 + ε)|Z|. In the remaining case, it is guaranteed that

L 6 |Z|+
√
nε 6 (1 + ε)

√
n/ε. Thus, we may compute the exact LCIS in O

(
n3/2ε−1/2 log n

)
time using

the algorithm running in O (nL log log n+ n log n) time [35].

18


	1 Introduction
	1.1 Longest Common Increasing Subsequence (LCIS)
	1.2 Our Results
	1.2.1 Parameterized Complexity I: Solution Size
	1.2.2 Parameterized Complexity II: k-LCIS
	1.2.3 Longest Common Weakly Increasing Subsequence (LCWIS)
	1.2.4 Strengthening the Hardness

	1.3 Discussion, Outline and Technical Contributions
	1.3.1 Technical Challenges
	1.3.2 Technical Contributions and Proof Outline


	2 Preliminaries
	2.1 Hardness Assumptions

	3 Main Construction: Hardness of LCIS
	3.1 Inflation
	3.2 Separator sequences
	3.3 Vector gadgets
	3.4 Final construction

	4 Matching Lower Bound for Output-Dependent Algorithms
	5 Hardness of k-LCIS
	5.1 Generalizing separator sequences
	5.2 Generalizing vector gadgets
	5.3 Putting pieces together

	6 Hardness of k-LCWIS
	7 Strengthening the Hardness
	8 Conclusion and Open Problems

