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Summary

� Poplar trees synthesize flavan-3-ols (catechin and proanthocyanidins) as a defense against

foliar rust fungi, but the regulation of this defense response is poorly understood. Here, we

investigated the role of hormones in regulating flavan-3-ol accumulation in poplar during rust

infection.
� We profiled levels of defense hormones, signaling genes, and flavan-3-ol metabolites in

black poplar leaves at different stages of rust infection. Hormone levels were manipulated by

external sprays, genetic engineering, and drought to reveal their role in rust fungal defenses.
� Levels of salicylic acid (SA), jasmonic acid, and abscisic acid increased in rust-infected leaves

and activated downstream signaling, with SA levels correlating closely with those of flavan-3-

ols. Pretreatment with the SA analog benzothiadiazole increased flavan-3-ol accumulation by

activating the MYB–bHLH–WD40 complex and reduced rust proliferation. Furthermore,

transgenic poplar lines overproducing SA exhibited higher amounts of flavan-3-ols constitu-

tively via the same transcriptional activation mechanism. These findings suggest a strong asso-

ciation among SA, flavan-3-ol biosynthesis, and rust resistance in poplars. Abscisic acid also

promoted poplar defense against rust infection, but likely through stomatal immunity inde-

pendent of flavan-3-ols. Jasmonic acid did not confer any apparent defense responses to the

fungal pathogen.
� We conclude that SA activates flavan-3-ol biosynthesis in poplar against rust infection.

Introduction

Plants evolved sophisticated chemical defense mechanisms to
protect themselves from biotic and abiotic stresses. They synthe-
size an enormous diversity of specialized metabolites to defend
against pathogens and herbivores, or to increase tolerance to abi-
otic stresses (Moore et al., 2014). Poplar trees accumulate high
quantities of phenolic metabolites, such as salicinoids, proantho-
cyanidins (PAs, also known as condensed tannins), hydroxycin-
namic acids, and monolignols in their leaves, stems, and roots
(Lindroth & Hwang, 1996; Tsai et al., 2006; Chen et al., 2009).
PAs and their monomeric flavan-3-ol building blocks (catechin,
epicatechin, and gallocatechin) are major end products of the
flavonoid pathway (Dixon et al., 2005). The biosynthesis and
accumulation of PAs were shown to increase in leaves of several
poplar species infected by the biotrophic rust fungi Melampsora

spp. (Miranda et al., 2007; Ullah et al., 2017), the most destruc-
tive poplar pathogen world-wide (Pinon et al., 1987). Moderately
resistant poplar genotypes constitutively accumulated higher
amounts of flavan-3-ols at the site of fungal infection than sus-
ceptible genotypes did, implicating catechin and PAs as effective
antifungal chemical defenses against rust infection (Ullah et al.,
2017). These compounds also act as defenses against
necrotrophic pathogens in other woody plants (Hammerbacher
et al., 2014; Wang et al., 2017b). Flavan-3-ols are also induced in
poplars by various abiotic stressors, such as ultraviolet light, high
temperature, and mechanical wounding (Tsai et al., 2006; Mell-
way et al., 2009; Wang et al., 2017b). Thus, poplar responds to
an array of environmental stimuli by synthesizing increased
amounts of catechin and PAs in its leaves. The biosynthesis of fla-
van-3-ols in poplar is well studied (Wang et al., 2013; Ullah
et al., 2017), and their regulation by the MYB–bHLH–WD40
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(MBW) complex of R2R3 MYB, basic helix–loop–helix
(bHLH), and WD40 transcription factors has also been reported
(Mellway et al., 2009; Yoshida et al., 2015; James et al., 2017;
Wang et al., 2017b). However, the role of hormones in the regu-
lation of flavan-3-ol biosynthesis is largely unknown.

The phytohormones salicylic acid (SA), jasmonic acid (JA),
and abscisic acid (ABA) are involved in defenses against biotic
and abiotic stresses as well as in plant development (Santner
et al., 2009; Pieterse et al., 2012). Typically, SA activates defense
responses against biotrophic pathogens and piercing–sucking
insects, whereas JA activates defenses against necrotrophs and
chewing insects (Thomma et al., 1998). ABA enhances plant tol-
erance to drought stress (Cutler et al., 2010; Jia et al., 2016) and
modulates plant defenses depending on the type of pathogen
attack (Asselbergh et al., 2008; Ton et al., 2009). Hormonal
crosstalk fine-tunes plant defense responses against specific
attackers. For example, the crosstalk between SA and JA is often
antagonistic (Vlot et al., 2009; Pieterse et al., 2012).

SA can be synthesized from L-phenylalanine via a benzoic or
coumaric acid intermediate (Vlot et al., 2009). Phenylalanine
ammonia lyase catalyzes the first reaction in this pathway, which
is also the first and common enzymatic step for phenylpropanoid
and flavonoid biosynthesis (Dixon et al., 2002; Vogt, 2010). SA
is further metabolized to its O-b-glucoside (SAG) by a specific
SA-glucosyltransferase (Lee & Raskin, 1999; Song, 2006). In
Arabidopsis, signaling downstream of SA is mostly controlled by a
master regulator called NONEXPRESSOR of PR GENES1
(NPR1), which activates a large set of transcription factors and
defense genes (Dong, 2004; Wang et al., 2006; Moore et al.,
2011). Benzothiadiazole (BTH) is a functional analog of SA
(Kunz et al., 1997) that can induce plant defense responses by
activating the expression of defense-related genes downstream of
SA (Gorlach et al., 1996; Lawton et al., 1996; Morris et al., 1998;
Latunde-Dada & Lucas, 2001). JA is synthesized from the pre-
cursor molecule 12-oxo-phytodienoic acid (cis-OPDA) in the
peroxisome. Several functional groups can also be added to the
JA backbone, including isoleucine, hydroxyl, carboxyl, methyl,
glucosyl, and sulfate ester residues, which may be important in
activation, deactivation, or transport of jasmonate signals (Fon-
seca et al., 2009; Wasternack & Hause, 2013). ABA is an iso-
prenoid hormone, best characterized for its role in inducing
stomatal closure to reduce water loss under drought conditions
(Xiong et al., 2006; Lobell et al., 2014). ABA can also trigger
early defense responses against bacterial and fungal pathogens by
inducing stomatal closure (Melotto et al., 2006; Sun et al., 2014)
and callose deposition to block the entry and progression of
invading pathogens (Ton & Mauch-Mani, 2004; Ton et al.,
2009).

The signaling pathways downstream of SA, JA, and ABA have
been well studied in herbaceous plant species such as Arabidopsis,
tobacco (Nicotiana tabacum), and rice (Oryza sativa) under dif-
ferent biotic and abiotic stress conditions. However, defense sig-
naling of these hormones remains unclear in woody plants. For
example, hyperaccumulation of SA in transgenic poplars elicits
strong oxidative responses by activating many downstream targets
of SA signaling without altering NPR1 expression (Xue et al.,

2013). This finding challenges the involvement of NPR1 in
poplar SA signaling. In poplars, defense-related genes were upreg-
ulated by fungal infection in both compatible and incompatible
interactions, but the response was faster in the latter (Miranda
et al., 2007; Rinaldi et al., 2007). An elicitor-induced transcrip-
tion factor WRKY23 was implicated in poplar response to rust
infection via its negative regulation of cell wall biogenesis and
flavonoid pathway genes (Levee et al., 2009). Transcripts of
flavonoid biosynthetic genes, including those involved in PA
biosynthesis, increased after SA application (Wang et al., 2013),
indicating a role for SA in regulating these antifungal phenolics.
Transcripts of JA biosynthetic genes were upregulated after rust
infection of a hybrid poplar (Azaiez et al., 2009). However, a
recent study reported that SA levels increased in black poplar
after rust infection but JA levels did not (Eberl et al., 2017), mak-
ing it unclear whether JA is involved in poplar defense against
pathogen attack.

The main objective of this study was to investigate the role of
phytohormones in the regulation of flavan-3-ol accumulation
during poplar–rust interactions. We quantified phytohormone
concentrations in black poplar leaves with and without rust fun-
gus inoculation, and found that SA, JA, and ABA all increased in
rust-infected leaves in a time-dependent manner. Next, we
manipulated hormone levels by external spraying, genetic trans-
formation, and/or application of mild drought stress. Both SA
and ABA were found to contribute to poplar resistance to rust,
by transcriptional activation of flavan-3-ol biosynthesis and by
reducing stomatal aperture, respectively.

Materials and Methods

Plant material and growth conditions

A black poplar genotype (Populus nigra L. NP1) obtained from a
natural population in northeastern Germany (52°3401″N,
14°3803″E) was the principal plant line used in this study. The
commercially available hybrid poplar Populus9 canadensis clone
Robusta was employed for the drought stress experiment. In
addition, wild-type (WT) and transgenic plants constitutively
expressing a bacterial SA synthase with a ferredoxin (FD) plastid-
targeting presequence (FD-Irp9) or SA hydroxylase (NahG ), for
SA overproduction or degradation, respectively, in a Populus
tremula9 alba INRA 717-1B4 background (Xue et al., 2013) were
used for hormone and phenolics profiling. Young poplar trees were
propagated from stem cuttings and grown in the glasshouse under
the conditions described by Ullah et al. (2017) or Frost et al.
(2012). Trees with a height of 80–100 cm and between 15 and 20
leaves were used in all experiments unless stated otherwise.

Inoculation of poplar leaves with rust fungus

Freshly harvested urediniospores of Melampsora larici-populina
were used for inoculation experiments. Poplar trees were trans-
ferred from the glasshouse to a climate chamber 1 wk before inoc-
ulation. A rust spore suspension (c. 105 spores ml�1 water) was
thoroughly sprayed onto the abaxial leaf surface, and mock-
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inoculated plants were sprayed with water. Each plant was cov-
ered with a polyethylene terephthalate (PET) bag (Bratschlauch,
Toppits, Minden, Germany) to maintain high humidity to facili-
tate spore germination. After 18 h, all bags were opened on top.
Leaf samples were collected at different times after inoculation.
At each time point, five plants were sampled from both rust-
infected and control treatments. Six leaves from leaf plastochron
index (LPI) 5–10 on each tree were harvested, mid-ribs were
removed, and leaf laminae were pooled and immediately frozen
in liquid nitrogen. Unless stated otherwise, the same inoculation
and sampling techniques were applied in all rust infection experi-
ments. LPI-5 was harvested from transgenic P. tremula9 alba
saplings using similar procedures.

Extraction of phytohormones and phenolics

Flash-frozen poplar leaves were ground to a fine powder under
liquid nitrogen and then lyophilized. Approximately 10 mg of
each lyophilized sample was extracted with 1 ml methanol con-
taining 4 ll phytohormone standard mix (40 ng of D4-SA
(Sigma-Aldrich), 40 ng of D6-JA (HPC Standards GmbH, Cun-
nersdorf, Germany), 40 ng of D6-ABA (Santa Cruz Biotechnol-
ogy, Dallas, TX, USA), 8 ng D6-JA-isoleucine (Ile) conjugate
(HPC Standards GmbH)), 5 lg apigenin 7-glucoside (Sigma-
Aldrich), and 0.4 mg phenyl b-D-glucopyranoside (Sigma-
Aldrich) as internal standards. The contents were vortexed vigor-
ously for a few seconds, incubated for 25 min at 20°C, and agi-
tated at 1500 rpm, then centrifuged at 13 000 g at 4°C for 5 min.
Approximately 900 ll of the supernatant was transferred to new
microcentrifuge tubes. The samples were directly analyzed for
phytohormones and phenolics, such as flavan-3-ols, other
flavonoids, phenolic acids, and salicinoids, by LC–MS. PA
oligomers were extracted from c. 50 mg freeze-dried leaf tissue
using the method described by Ullah et al. (2017).

Quantification of phytohormones by LC–MS/MS

Phytohormone analysis was performed on an Agilent 1260 high-
performance liquid chromatography (HPLC) system (Agilent
Technologies, Santa Clara, CA, USA) attached to an API 5000
tandem mass spectrometer (AB SCIEX, Darmstadt, Germany)
equipped with a turbospray ion source operated in the negative
ionization mode. Phytohormones were separated on a Zorbax
Eclipse XDB-C18 column (50 mm9 4.6 mm, 18 lm Agilent) at
25°C, with two mobile phases consisting of 0.05% formic acid in
(A) water and (B) acetonitrile, at a flow rate of 1.1 ml min�1

using the elution profile described by Vadassery et al. (2012).
The parent ion and corresponding fragments of SA, jasmonates,
and ABA were analyzed by multiple reaction monitoring as
described earlier (Vadassery et al., 2012; Sanchez-Arcos et al.,
2016). The concentrations of SA, ABA, JA, and JA-Ile were
determined relative to the corresponding internal standard. The
concentration of SAG was determined relative to D4-SA applying
a theoretical response factor of 1.0. The concentrations of OH-
JA, JA-glucoside (Glc) and 12-sulfo-JA were determined relative
to D6-JA applying a theoretical response factor of 1.0. The levels

of 12-hydroxy-JA-Ile (OH-JA-Ile) and 12-carboxy-JA-Ile
(COOH-JA-Ile) were determined relative to the isotopically
labeled JA-Ile standard applying a theoretical response factor of
1.0.

Quantification of phenolics by LC–MS/MS and HPLC

Flavan-3-ol monomers and dimers were analyzed with an Agilent
1200 HPLC system (Agilent Technologies) attached to an API
3200 tandem mass spectrometer (Applied Biosystems, Darmstadt,
Germany) and equipped with a turbospray ion source operating in
the negative ionization mode. Separation was achieved on a Zor-
bax Eclipse XDB-C18 column (50mm9 4.6 mm, 1.8 lm, Agi-
lent). Formic acid (0.05%) in water and acetonitrile was employed
as mobile phases A and B, respectively. The elution profile and
other parameters were the same as described by Ullah et al. (2017).
Phenolic acids were analyzed by the same LC–MS/MS system.
Acetic acid (0.1%) in water was used as mobile phase A. Salici-
noids and rutin were analyzed following the methods described by
Boeckler et al. (2013). PA oligomers were analyzed by HPLC with
fluorescence detection as described by Hammerbacher et al.
(2014).

RNA isolation, complementary DNA synthesis, and
quantitative reverse transcription PCR

Total RNA from ground leaf tissue was extracted using the Invit-
rap Spin Plant RNA Mini Kit (Stratec Biomedical, Birkenfeld,
Germany) following the manufacturer’s instructions and as
described by Ullah et al. (2017). Reverse transcription of 1 lg
RNA into complementary DNA (cDNA) was performed by
using SuperScript II reverse transcriptase (Invitrogen) and
50 pmol Oligo(dT)12–18 Primer (Invitrogen) in a reaction vol-
ume of 20 ll. The quantitative PCR reactions were performed as
described by Ullah et al. (2017), using cDNA equivalent to 10–
12 ng of total RNA. Transcript abundance was normalized to the
abundance of Ubiquitin and was calculated from five biological
replicates, with two or three technical replicates per biological
sample. Relative expression level was determined using the for-
mula 2�DCT . Primer sequences for all genes used in this study are
given in Supporting Information Table S1.

Gene expression analysis of transgenic plants with altered
SA levels

Transgenic P. tremula9 alba (INRA 717-1B4) lines and plant
growth conditions were described previously (Xue et al., 2013).
Total RNAs extracted using the Plant RNA Reagent (Invitrogen)
and the Direct-zol RNA kit (Zymo Research, Irvine, CA, USA)
were used for Illumina RNA sequencing (RNA-Seq) at the US
Department of Energy Joint Genome Institute (DOE JGI), as part
of the Community Science Program and project led by Robert
Schmitz, Chung-Jui Tsai, and Jeremy Schmutz. The NCBI
Sequence Read Archive (SRA) accession numbers for RNA-Seq
data are: SRP146354, SRP146332, and SRP146333 for WT
from 27°C, SRP146323, SRP146337, and SRP146350 for
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WT from 35°C, SRP146326 and SRP146339 for transgenic line
F10 from 27°C, and SRP146340, SRP146325, and SRP146322
for F10 from 35°C. Sequence reads were quality checked and
mapped onto a variant-substituted P. tremula9 alba genome (sP-
ta717) v1.1 as described (Xue et al., 2015) using Tophat2 v2.0.12
(Kim et al., 2013). Transcript abundance was estimated by HTSeq
(Anders et al., 2015) and differential expression performed using
DESeq2 (Love et al., 2014). Microarray expression data were
extracted from a previous study (Xue et al., 2013).

Quantification of rust fungus by quantitative reverse
transcription PCR and histochemical staining

The transcript levels of the M. larici-populina Actin gene were
determined by quantitative reverse transcription (qRT) PCR and
normalized to poplar Ubiquitin mRNA levels to calculate relative
rust growth. For microscopy, leaves were harvested at 7 d post
inoculation (dpi) to observe fungal colonization. Leaf discs from
the infected leaves were cleared by placing them immediately into
boiling 70% (v/v) ethanol for 10min in a water bath. After subse-
quent renewal of the ethanol solution, a few drops of lactophenol
cotton blue were added, and discs were cleared by placing them in
saturated chloral hydrate (25%) for 2 d. The leaf discs were
mounted in 60% glycerol and observed under a stereomicroscope
(Stemi 2000-CS, Carl Zeiss Microscopy GmbH, Jena, Germany)
and an inverted light microscope (Axiovert 200, Carl Zeiss).

Exogenous spraying of chemicals before rust inoculation

The following chemicals were purchased to manipulate the
hormone concentrations in poplar trees: SA analog BTH

(Sigma-Aldrich, Germany), methyl jasmonate (MeJA; Sigma-
Aldrich), and (+/�)-ABA (Sigma-Aldrich). BTH (200 lM
and 1 mM), MeJA (100 lM), and ABA (100 lM) were dis-
solved in 0.2% methanol. The solutions were generously
sprayed onto both surfaces of black poplar leaves until liquid
dripped off the leaves. Mock-treated plants were sprayed only
with 0.2% methanol in water. After spraying, the plants were
covered with PET bags. All PET bags were removed after
18 h. Then after an additional 6 h, four plants from each
treatment were sampled (0 dpi) and another 10 plants from
each group were inoculated with rust fungus. Samples were
collected from five trees per treatment at 3 and 7 dpi as
described earlier (see Fig. 4a). The setup of the second spray-
ing experiment using only BTH (1 mM) was similar, except
corresponding uninfected control trees were included to com-
pare with rust-inoculated trees.

Drought stress treatments followed by rust inoculation

Thirty hybrid poplar P.9 canadensis (clone Robusta) plants of
similar height (c. 80 cm) having approximately equal numbers of
leaves (30) were chosen for this experiment. Fifteen trees were
watered normally (c. 100 g per plant per day) at 13:00 h and 15
plants were exposed to a mild drought stress (c. 50 g water per
plant per day). Soil moisture levels corresponding to 80% and
40% field capacity were considered normal and mild drought
stress, respectively (Jia et al., 2016). After 7 d, five trees from each
group were sampled and the remaining 10 plants per treatment
were inoculated with M. larici-populina. The watering and
drought-stress treatments were continued until further sampling
at 4 and 8 dpi (see Fig. 8a).
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Stomatal aperture measurements

Stomatal aperture size was measured in planta according to the
method described by Wu & Zhao (2017). Stomatal aperture was
monitored in plants sampled at 4 dpi using LPI 4. Transparent
nail polish was painted on the abaxial leaf surface and allowed to
dry for 5 min. Transparent sticky tape was used to seal the edges
of the nail polish. The sticky tape was peeled off along with the
dried nail polish and mounted onto a clean glass slide. Two slides
were prepared from each leaf (both sides of the midrib), and three
microscopic fields per slide were photographed using an inverted
light microscope (Axiovert 200) coupled with a camera
(AxioVision). Stomatal apertures (> 100 stomata per leaf section)
were measured at their mid-point using IMAGEJ software (https://
imagej.nih.gov/ij/index.html).

Statistical analysis

All data were analyzed using R v.3.2.0. Normality of data and
homogeneity of variances were determined using the Shapiro–
Wilk and the Levene test respectively. If testing assumptions were
not met, data were square-root or log transformed. Data were then
analyzed by parametric tests such as ANOVA and Student’s t-test.
Salicylates and flavan-3-ol levels in rust-infected and mock-treated
plants at each time point, were compared using a two-tailed Stu-
dent’s t-test. Data on defense hormones and expression of signal-
ing genes over the course of infection were analyzed by two-way
ANOVA with two independent variables ‘treatment (rust vs con-
trol)’ and ‘time points’. All data obtained after exogenous or
genetic manipulations of hormones were analyzed by one-way
ANOVA followed by Tukey’s post-hoc test at 95% confidence. A

Student’s t-test was used to compare between the two means of
the drought-stress experiment at each time point.

Results

Rust infection stimulates foliar levels of flavan-3-ols and
major defense hormones in black poplar

Catechin (2,3-trans-(+)-flavan-3-ol, Fig. 1a) levels increased
steadily and significantly in rust-infected P. nigra leaves at 3 and
7 dpi relative to mock-treated leaves (Fig. 1b). The flavan-3-ol
dimer procyanidin B1 (PAB1, Fig. 1a) also increased correspond-
ingly over the course of infection (Fig. 1b). The defense hormone
SA and its glucose-conjugate SAG both increased significantly,
by up to eight- and 18-fold, respectively in rust-infected leaves
compared with mock-inoculated control (Fig. 1c). These data
indicate that the accumulation of flavan-3-ols and SA is co-
regulated in rust-infected black poplar leaves.

To investigate changes in hormone concentrations upon rust
inoculation more precisely, a kinetic infection experiment was
conducted. Black poplar leaves were inoculated with M. larici-
populina or treated with water (control), and phytohormone
levels were monitored for up to 21 dpi. SA concentrations signifi-
cantly increased in rust-infected leaves and peaked at 7 dpi
(Fig. 2a). A steady accumulation of the more abundant SAG was
observed in rust-infected plants over the course of infection
(Fig. 2b). ABA levels were also induced by rust infection, with
the highest concentrations at 7 dpi (Fig. 2c). JA increased rapidly
after inoculation, but the response diminished over time
(Fig. 2d). By contrast, the biosynthetic precursor of JA, cis-
OPDA, did not change in response to infection (Fig. S1).
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nonsignificant; *, P ≤ 0.05; ***, P ≤ 0.001.
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However, the JA catabolites, JA-glucoside (JA-Glc) and 12-
sulfojasmonic acid, increased significantly over the course of
infection, as did the level of the JA-Ile and its catabolites, OH-
JA-Ile and COOH-JA-Ile (Figs 1e,f, S1).

We also compared hormone and flavan-3-ol levels in young,
rust-free leaves of both rust-infected and mock-inoculated plants.
The concentrations of flavan-3-ols, SA, SAG, and ABA signifi-
cantly increased in systemic leaves of rust-infected plants at 7 dpi,
but JA levels did not change (Fig. S2). Taken together, these data
show that the major defense hormones were significantly upregu-
lated in rust-infected poplar leaves either at a specific time point
or more generally over the course of infection. However, it is
unclear which signals specifically trigger the antifungal defense
reactions during this compatible interaction.

Black poplar activates defense signaling genes in response
to rust infection

To determine whether the increases in hormones observed upon
rust infection activated downstream signaling pathways, we ana-
lyzed the relative expression levels of genes potentially involved in
defense signaling using qRT-PCR. An ortholog of AtNPR1, the
master regulator of SA signaling in Arabidopsis (Cao et al., 1997),
was expressed at very low levels and slightly increased after rust
infection at 7 dpi (Fig. 3a). Transcript levels of the WRKY

transcription factors WRKY18, WRKY89 (Fig. 3b,c), and
WRKY70 (Fig. S3), known to be stimulated by SA (Jiang et al.,
2014), increased significantly in rust-infected leaves, but not
WRKY23 (Fig. S3) previously implicated in poplar–rust interac-
tions (Levee et al., 2009). Genes encoding pathogenesis-related
proteins (PRs), known SA signaling markers, had been shown to
be induced by rust previously (Rinaldi et al., 2007; Hamel et al.,
2011). Here, accumulation of PR1 transcripts increased threefold
(Fig. 3d), and PR2.3 transcripts increased up to 30-fold in rust-
infected leaves (Fig. 3e). However, the relative expression of PR5
was significantly lower in the foliage of rust-infected trees than in
control plants over the course of infection (Fig. S3). Transcrip-
tion of the JA signaling gene JAZ10 significantly increased after
rust infection at 7 and 14 dpi compared with the corresponding
control plants (Fig. 3f).

Pretreatments of BTH and ABA enhance black poplar
resistance to rust

To test whether exogenous phytohormones could activate poplar
defense against rust infection, we treated black poplar saplings
with BTH (a functional analog of SA), MeJA, and ABA for 24 h
before inoculation with M. larici-populina (Fig. 4a). At 3 dpi, the
time when the fungus establishes a hyphal network in mesophyll
tissues without visible symptoms, the relative growth of the
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fungus was significantly lower in BTH- and ABA-treated plants
than in mock- and MeJA-treated plants (Fig. 4b) by c. 40–50%.
A similar rust colonization pattern was observed at 7 dpi, when
uredinia appear on the lower surface of the leaves. These samples
were then subjected to phenolic profiling. The most striking dif-
ferences between pretreatments were seen in flavan-3-ols. Cate-
chin levels were significantly higher in rust-infected leaves
pretreated with BTH than with ABA, MeJA, or mock treatments
(Fig. 5a). Similar patterns were also observed for epicatechin, gal-
locatechin, and dimeric PAB1 (Fig. 5a). The levels of salicinoids,
phenolic acids, and the flavonoid rutin were largely unchanged
by the pretreatments except for phenolic acids, which were
slightly reduced by BTH (Table S2; Fig. S4).

The MeJA treatment significantly increased the levels of JA
(> 25-fold), JA-Ile, and other JA conjugates and catabolites in
poplar leaves after 1 d (Table S3). Similarly, ABA levels increased
by > 1000-fold 1 d following ABA application (Table S3). After
rust infection, the MeJA- and ABA-induced differences

diminished over time, but remained significant through 7 dpi
(Figs 5b, S5). BTH-treated poplars contained slightly lower levels
of SA than the mock-treated plants did (Table S3). Similar pat-
terns persisted after rust inoculation, with the difference becom-
ing significant at 7 dpi (Fig. 5b).

BTH stimulates flavan-3-ol biosynthesis independent of rust
infection

To clarify whether BTH-triggered flavan-3-ol accumulation
occurs exclusively under pathogen attack or also without rust
inoculation, we treated poplar plants with a higher concentration
of BTH (1 mM) and compared the accumulation of flavan-3-ol
metabolites with or without rust infection. Already 24 h after
BTH treatment but before rust inoculation (0 dpi), catechin
accumulation was significantly higher in BTH-treated than in
mock-treated plants (Fig. 6a). Similar patterns were also observed
in trees at 3 and 7 dpi regardless of rust infection (Fig. 6a). The
levels of gallocatechin and PA dimers were also higher in BTH-
treated plants, both with and without rust infection (Fig. S6).
The levels of SA slightly decreased in BTH-treated plants, but
significant differences were only observed after rust infection at
7 dpi (Fig. 6b). Interestingly, concentrations of the abundant
SAG were significantly higher in BTH-treated plants throughout
the monitoring period regardless of rust infection (Fig. 6b). The
level of exogenous BTH gradually declined over time but was still
detectable at 7 dpi (Fig. S6). As expected, rust colonization, as
well as sporulation, was reduced in poplar trees that were pre-
treated with BTH (Fig. 6c). Taken together, these results suggest
that the SA analog BTH increased black poplar resistance against
foliar rust infection by triggering flavan-3-ol accumulation.

To reveal the mechanism of BTH-stimulated flavan-3-ol accu-
mulation in poplar, we analyzed the expression of flavonoid path-
way genes leading to PA synthesis by qRT-PCR (Fig. 7a). Our
data (Fig 7b) clearly demonstrated that transcript levels of chal-
cone synthase (CHS1, CHS4), chalcone isomerase (CHI1),
flavanone 3-hydroxylase (F3H1), dihydroflavonol reductase
(DFR1), leucoanthocyanidin reductase (LAR), and anthocyanidin
reductase (ANR) increased significantly in BTH-treated plants
compared with the corresponding mock-treated trees. Moreover,
the transcriptional regulators (MYB134, MYB115, bHLH,
WD40) of PA biosynthesis were also upregulated upon BTH
treatment, whereas the negative regulator (MYB182) was slightly
lower in BTH-treated saplings (Fig. 7b).

Endogenously elevated SA promotes flavan-3-ol
biosynthesis and accumulation

The aforementioned data strongly suggest SA as a central player
in PA-mediated rust resistance in black poplar. To more directly
assess the role of SA in PA biosynthesis, we explored a pathogen-
free system using three transgenic P. tremula9 alba FD-Irp9 lines
with constitutively elevated levels of SA and SAG (Xue et al.,
2013). For comparison, we included one WT and an NahG line
(expressing a bacterial SA hydroxylase) for flavan-3-ol analysis. As
expected, the levels of SA and SAG were significantly higher in
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reduces the colonization of rust fungus in the foliage of black poplar.
(a) Experimental outline. Young black poplar trees were sprayed with BTH
(200 lM in 0.2%methanol), methyl jasmonate (MeJA, 100 lM), ABA
(100 lM) or with 0.2%methanol (mock). A subset of plants from each
group was sampled 1 d after spraying (0 d post inoculation (dpi) of rust
fungus) and the remaining trees were inoculated with rust spores. Leaf
laminae were collected from separate trees at 3 and 7 d after rust
inoculation. (b) Relative colonization of rust fungus in different poplar
trees over the course of infection.Melampsora larici-populina actin
messenger RNA levels were normalized to poplar ubiquitinmessenger
RNA levels to calculate relative rust growth. Time-course data were
analyzed using a one-way ANOVA followed by Tukey’s post-hoc test.
Different letters indicate means were statistically different at 95%
confidence level. Data are presented as the mean � SE (n = 5), with each
replicate consisting of a pool of six fully expanded leaves (leaf plastochron
index 5–10) from a single tree. Three technical replicates were used per
sample during quantitative reverse transcription PCR.
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the FD-Irp9 plants than in WT plants, by up to 12-fold, whereas
the levels were lower in NahG plants (Fig. 8a). The concentra-
tions of JA and ABA, on the other hand, did not change in SA
overproducing lines in comparison with WT and the NahG line
(Fig. 8a).

Consistent with the results of BTH spraying, SA overproduc-
ing plants accumulated significantly higher amounts of flavan-3-
ol monomers, such as catechin and gallocatechin, as well as
dimeric PAB1, than in WT and NahG plants (Fig. 8b). Further-
more, PA oligomers (up to 10–12 monomeric units) were 25–
30% higher than in WT plants (Fig. 8b). These data strongly
support the hypothesis that SA positively regulates flavan-3-ol
biosynthesis in poplar.

RNA-Seq analysis confirmed significant upregulation of essen-
tially all known flavan-3-ol biosynthetic pathway genes in a high-
SA (F10) line relative to the control (Fig. 8c). Previous work has
shown that SA and SAG levels were higher in transgenic plants
grown at 35°C than at 27°C (Xue et al., 2013). The stronger
transcriptional induction of PA biosynthetic genes in transgenic
leaves at 35°C than at 27°C (Fig. 8c) is therefore consistent with
SA-dependent regulation of PA biosynthesis. Moreover, tran-
scription factors MYB115, MYB134, bHLH, and WD40 were
also transcriptionally co-regulated with the flavonoid pathway
genes (Fig. 8c), suggesting that SA stimulates PA biosynthesis by
activating the MBW complex.

Increased levels of ABA under mild drought conditions
reduces rust colonization via stomatal closure without
altering flavan-3-ol levels

The induction of ABA in black poplar upon infection by the rust
fungus (Fig. 2c) and the increased resistance against rust after
exogenous ABA treatment (Fig. 4b) suggested that ABA also
plays a role during poplar–rust interactions. The biosynthesis of
ABA is known to be upregulated in many plants, including
poplars, under drought stress (Cutler et al., 2010; Jia et al.,
2016). To investigate whether poplar response to rust infection is
altered under drought stress, we subjected poplar saplings to mild
drought stress followed by rust inoculation (Fig. 9a). As expected,
the endogenous levels of ABA increased approximately threefold
after 7 d of mild drought stress (0 dpi), and further increased up
to 16-fold (1.3 lg g�1 leaf DW) in response to sustained drought
stress and rust infection at 4 dpi, before returning to basal levels
at 8 dpi (Fig. 9b). Under mild drought stress, the growth of
M. larici-populina significantly decreased by 10-fold and sixfold
at 4 dpi and 8 dpi, respectively (Fig. 9c).

We described earlier that short-term exogenous ABA treat-
ments did not affect flavan-3-ol accumulation (Fig. 5; Table S2).
Interestingly, catechin levels increased significantly after 7 d of
mild drought (0 dpi), although SA levels did not change (Fig. 9d,
e). However, drought stress abolished the typical rust-induced
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accumulations of SA and PAs (catechin, epicatechin, gallocate-
chin, and PAB1) at 4 and 8 dpi (Figs 9e, S7). Thus, the drought-
related resistance to rust infection cannot be attributed to ele-
vated SA or flavan-3-ol levels. Levels of jasmonates, salicinoids,
and phenolic acids in drought-stressed and rust-infected leaves
did not change (Fig. S7). Analysis of stomatal opening revealed a
significantly reduced aperture in drought-stressed plants after rust
inoculation (Fig. 9f ). These findings indicate that, under mild
drought stress, ABA induces stomatal closure that could reduce
entry of the pathogen to confer resistance independent of flavan-
3-ols.

Discussion

In nature, poplar trees are constantly challenged by a plethora of
pathogens. Among these, rust fungi (Melampsora spp.) are the
most widespread and destructive pathogens. These obligate
biotrophs do not kill their hosts, but decrease biomass produc-
tion by reducing photosynthesis and stimulating early defoliation
(Newcombe et al., 2001; Duplessis et al., 2009). To limit rust
severity, poplar synthesizes high amounts of flavan-3-ols,

including monomeric catechin and polymeric PAs (Ullah et al.,
2017). Here, we investigated the roles of hormones in poplar
defense against rust infection with particular emphasis on the reg-
ulation of flavan-3-ol biosynthesis. The levels of SA, JA, and
ABA all increased in black poplar leaves during rust infection.
However, local rust infection resulted in increased concentrations
of only SA and ABA in systemic leaves without changing the
levels of JA. Poplar trees that were pretreated with the SA analog
BTH or with ABA were less susceptible to rust infection than
mock- and MeJA-treated plants were. We show that SA and
BTH enhanced rust resistance by increasing catechin and PA
accumulation via transcriptional activation of PA biosynthesis in
poplars. ABA, on the other hand, increased poplar resistance to
rust infection by stimulating stomatal closure (Fig. 10).

Rust infection induces increases of SA, JA, and ABA in black
poplar

SA, JA, and ABA levels increased in rust-colonized black poplar
leaves, but with different temporal responses. In our study, JA
accumulated to higher levels during the early colonization phase,
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collected from 6-wk-old poplar trees. Data were analyzed using a one-way ANOVA followed by Tukey’s post-hoc test, and different letters indicate that
groups were statistically different (P < 0.05). Data are presented as the mean � SE (n = 3). SAG, SA glucoside; ABA, abscisic acid; JA, jasmonic acid; WT,
wild-type; NahG, gene encoding SA hydroxylase; ns, nonsignificant. (c) Heat map depiction of the effects of SA on PA gene expression quantified by RNA
sequencing. Transcript abundances of WT and high-SA-producing plants at two different growth temperatures were converted to expression ratios,
log2-transformed and visualized in the heat map. Yellow indicates no change in expression; red denotes upregulation. Statistical significance is denoted by
bold underlined (P < 0.01) or bold italics (P < 0.05), with n = 3 biological replicates, except F10 at 27°C (n = 2).
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whereas SA and ABA reached maximum levels during sporulation
with a sustained accumulation of SAG over the course of infec-
tion. Rust infection also increased transcript levels of the SA- and
JA-responsive WRKY18 (Jiang et al., 2014), the SA-responsive
WRKY89 (Jiang et al., 2016), several PR genes (Boyle et al.,
2010), and the JA-responsive JAZ10 (Hamel et al., 2011).
Together, these data indicate that the JA and SA signaling path-
ways were both upregulated during rust infection and their antag-
onism is not evident in poplar–rust interactions as is shown for
herbaceous plants (Spoel et al., 2003; Pieterse et al., 2012). A lack
of SA–JA antagonism in poplars was also observed previously.

Increased levels of defense-related gene expression were elicited
by both SA and JA applications in an ozone-tolerant hybrid
poplar clone (Koch et al., 2000), whereas increased levels of SA,
JA, and ABA were detected in young black poplar trees upon her-
bivore feeding (Clavijo McCormick et al., 2014). Likewise,
detached leaves of in vitro Populus davidiana treated with MeJA
showed increased levels of SA (Park et al., 2017). However, we
observed only a slight increase in SA contents upon MeJA treat-
ment in planta, and JA content did not change in transgenic
poplars overproducing SA. Thus, it appears that SA and JA are
not necessarily antagonistic in poplar.
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Fig. 9 Mild drought stress in poplar (Populus9 canadensis Robusta) increases resistance to rust fungus infection. (a) Experimental outline. Poplar saplings
were watered normally or exposed to mild drought conditions. After 7 d, a subset of plants was sampled and the remaining plants were inoculated with
Melampsora larici-populina. The drought treatment was continued until the end of the experiment. (b) Concentrations of abscisic acid (ABA). (c) Relative
rust colonization under mild drought or normal watering treatment at 3 and 7 d post inoculation (dpi).M. larici-populina Actinmessenger RNA levels were
normalized to poplar Ubiquitinmessenger RNA levels to calculate relative rust growth. (d) Concentrations of flavan-3-ol monomers catechin and
gallocatechin, and the flavan-3-ol dimer procyanidin B1 (PAB1) under mild drought and normal watering treatments with or without rust inoculation. (e)
Concentrations of salicylic acid (SA). (f) Stomatal aperture at 4 dpi under mild drought or normal watering treatment. Data were analyzed using a two-
tailed Student’s t-test: *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. Data are presented as the mean � SE (n = 5) and each replicate consisted of a pool of five
fully expanded leaves (leaf plastochron index 5–10) from a single tree.
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SA increases poplar defenses against rust by triggering
accumulation of flavan-3-ols

Flavan-3-ols have been shown as constitutive and induced chemi-
cal defenses in poplar against fungal pathogens (Ullah et al.,
2017; Wang et al., 2017b). In this investigation, we show that fla-
van-3-ols increased only after treatments with the SA analog
BTH, but not with ABA or MeJA. BTH is well known for its
efficacy in activating SA-mediated defense signaling in a wide
range of plant species (Friedrich et al., 1996; Lawton et al.,
1996). In the model system Arabidopsis, where SA defense mech-
anisms have been most extensively studied, SA and BTH are not
known to stimulate the flavonoid biosynthetic pathway. How-
ever, exogenous SA application to the culture medium of Cistus
heterophyllus resulted in increased accumulation of PAs in grow-
ing shoots (L�opez-Orenes et al., 2013). SA also activates
flavonoid biosynthesis and increased PA accumulation in cell sus-
pension cultures of grapevine (Wang et al., 2017a). These obser-
vations, along with our observations of elevated flavan-3-ol
accumulation following leaf rust infection and upon protective
BTH treatments, implicate SA as the defense hormone mediating
PA-based resistance to rust fungi in poplar.

Analysis of transgenic poplars with constitutively elevated SA
(Xue et al., 2013) provides independent evidence for a role of SA
in PA biosynthesis. In this case, SA hyperaccumulation was
achieved by manipulating SA biosynthesis, unlike in many
Arabidopsis mutants that exhibit increased SA accumulation as a
pleiotropic effect due to mutations in defense signaling or other
cellular processes (Mateo et al., 2006). These transgenic poplars
thus permit a direct assessment of the hypothesized role of SA
without other confounding factors. We show that these plants

constitutively accumulated higher amounts of flavan-3-ols than
WT and NahG plants did. Transgenic SA manipulations also
affected other secondary metabolites in poplar (Morse et al.,
2007; Xue et al., 2013), such as reductions of salicinoids in SA-
overproducing poplars. We indeed observed a slight decrease in
the levels of salicinoids in BTH-treated plants, which is likely due
to a trade-off between PA and salicinoid biosynthesis in poplar
(Mellway et al., 2009; Boeckler et al., 2014). These data indicate
that SA triggers flavan-3-ol biosynthesis only, whereas levels of
other abundant phenolic compounds in poplar are either unaf-
fected or reduced due to a metabolic trade-off.

SA activates MYB transcription factors to induce flavan-3-
ol biosynthesis

Gene expression analysis revealed widespread transcriptional
upregulation of flavonoid pathway genes involved in PA synthesis
by exogenous BTH treatment as well as by endogenous SA
increases in poplars. The flavonoid biosynthetic pathway is
known to be transcriptionally regulated by the MBW complex
(Hichri et al., 2011). MYB134 was the first transcription factor
characterized in poplar that positively regulates PA biosynthesis
(Mellway et al., 2009). Recently, MYB115 was shown to be
another positive regulator of PA synthesis (James et al., 2017;
Wang et al., 2017b). These two transcription factors work in
association with a bHLH131 transcription factor and a WD40
protein in the poplar MBW complex (James et al., 2017). We
showed that transcript levels of these regulatory genes increased
in both BTH-treated and SA-hyperaccumulating lines. There-
fore, the SA-mediated flavan-3-ol increases in poplar in response
to rust infection can be attributed to the transcriptional

Flavan-3-ol
biosynthetic genes

Rust colonization

PR genes
WRKYs Stomatal

closure

Ullah et al. (2017)
and, this study

ABAJA SA?

MYB/bHLH/WD

Catechin and PAs

Drought

Pathogen entry?
Stomatal immunity?

Rust

Fig. 10 Hormone-mediated defenses in poplar against rust infection. The biosynthesis of salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) are
all upregulated in poplar leaves colonized by the rust fungusMelampsora larici-populina. SA stimulates expression of WRKY transcription factors and
pathogenesis-related (PR) genes. SA induces transcription of MYB134, MYB115, bHLH131, and WD40, which then upregulate a large set of flavan-3-ol
biosynthetic genes. Increasing flavan-3-ol biosynthesis in turn leads to accumulation of catechin and PAs, which negatively influence rust colonization. ABA
also increases poplar resistance by inhibiting pathogen entry via stomatal closure. Solid lines indicate findings supported by experimental evidence obtained
in this study.
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upregulation of MYB/bHLH/WD40 genes, which then induce
transcription of genes encoding enzymes of the PA biosynthetic
pathway. Although the regulatory elements responsible for SA
activation of the MBW complex remain to be discovered, this
work provides convincing evidence for a direct role of SA in regu-
lating PA biosynthesis in poplar.

ABA increases poplar defenses against rust by stomatal
closure

ABA did not affect SA and flavan-3-ol accumulations, although
its application improved poplar resistance to subsequent fungus
infection. This suggests that ABA-mediated defense acts inde-
pendently of SA signaling. Indeed, ABA levels increased in
poplar leaves under mild drought stress, and they were further
augmented by rust infection at 4 dpi, whereas SA levels did not
change during drought and were not responsive to rust infec-
tion in drought-stressed plants. As a result, ABA levels
increased but SA levels decreased at 4 dpi when rust growth
was reduced. Based on reduced stomatal aperture in drought-
stressed and rust-infected leaves at 4 dpi, we reason that ABA-
mediated rust resistance is likely associated with stomatal
immunity. Stomata are the entry points of many pathogens
(Gudesblat et al., 2009), and closure of stomata is a defense
strategy employed by plants to limit entry of pathogens into
leaves (Melotto et al., 2006; Sun et al., 2014). After germina-
tion of Melampsora spores on the abaxial surface of poplar
leaves, the germ tubes penetrate via stomata (Newcombe et al.,
2001; Hacquard et al., 2011). ABA increased significantly 6 h
after infection and reached a maximum level at 7 dpi. Thus,
ABA likely acts as an early defense by inducing stomatal closure
to prevent entry of rust fungi, and the sustained increases of
ABA upon rust infection could strengthen this physical defense
during the course of the infection. Consistent with this idea,
increased ABA under mild drought stress is associated with
reduced stomatal aperture size, which might have limited
pathogen entry. Continued increases of ABA resulted in sub-
stantially reduced rust colonization throughout our monitoring
period, up to 8 dpi, in drought-stressed plants. A negative asso-
ciation between stomatal density/pore size and rust resistance
was reported in poplar using a genome-wide association study
(McKown et al., 2014), supporting a role of stomatal immunity
in poplar–rust interactions. We suggest that signal transduction
during the poplar–rust interaction may be fine-tuned under
drought stress such that increases in ABA confer both drought
tolerance and disease resistance by reducing stomatal aperture,
and that the SA-mediated and metabolically costly defense
mechanisms are downregulated.

In conclusion, upon infection by the biotrophic rust fungus
M. larici-populina, black poplar activates SA, JA, and ABA sig-
naling pathways in its leaves. SA induces the accumulation of
catechin and PAs, compounds known as effective defenses
against leaf rust infection. ABA also plays a role in rust resis-
tance by triggering reductions in stomatal aperture size that
limit fungal entry, a resistance mechanism that may be more
important under drought stress with elevated levels of ABA.

Thus, the roles of hormones in regulating defense appear to
differ between woody perennials and herbaceous plants. We
showed no evidence of antagonism between SA and JA in
poplar, but many other species should be surveyed before any
generalization can be made.

Further study is also necessary to dissect the regulation of
stomatal immunity in poplar trees during simultaneous drought
and rust infection, two stresses that may be connected by reactive
oxygen species (ROS) accumulation. It has been shown that rust
infection induces ROS accumulation around the stomata cells in
poplar (Boyle et al., 2010), and drought stress also induces oxida-
tive stress in poplar leaves (Jia et al., 2016). However, increased
ROS tolerance in poplar is associated with susceptibility to rust
(La Mantia et al., 2018). Further questions to be addressed are
how rust and drought interact to control ROS accumulation, and
whether flavan-3-ols themselves are antioxidant or prooxidant
under these conditions.
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Fig. S1 Effect of rust infection on the concentrations of the jas-
monic acid (JA) precursor, cis-OPDA, and JA catabolites in black
poplar leaves over the course of infection.

Fig. S2 Effect of rust infection on the accumulation of flavan-3-
ols, abscisic acid and salicylic acid in expanding systemic leaves of
black poplar trees.

Fig. S3 Effect of rust infection on the relative expression levels of
WRKY23,WRKY70 and PR5.
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Fig. S4 Phytohormone application before rust infection did not
alter the levels of other phenolic metabolites in poplar besides fla-
van-3-ols.

Fig. S5 Jasmonate concentrations in Populus nigra leaves after
exogenous phytohormone application followed by rust infection.

Fig. S6 Accumulation of flavan-3-ols in black poplar leaves
treated with the salicylic acid analog benzothiadiazole.

Fig. S7 Concentrations of jasmonates, epigallocatechin, salici-
noids and phenolic acids in poplar (Populus9 canadensis
Robusta) leaves under mild drought stress and rust infection.

Table S1 Primer sequences used in this study.

Table S2 Levels of phenolic metabolites in black poplar leaves
1 d after exogenous hormone treatment.

Table S3 Levels of endogenous hormones in black poplar leaves
1 d after exogenous hormone treatment.
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