Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Distinct modes of functional connectivity induced by movie-watching

MPG-Autoren
/persons/resource/persons208989

Deco,  Gustavo
Department Neuropsychology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Demirtas, M., Ponce-Alvarez, A., Gilson, M., Hagmann, P., Mantini, D., Betti, V., et al. (2019). Distinct modes of functional connectivity induced by movie-watching. NeuroImage, 184, 335-348. doi:10.1016/j.neuroimage.2018.09.042.


Zitierlink: https://hdl.handle.net/21.11116/0000-0002-4F28-A
Zusammenfassung
A fundamental question in systems neuroscience is how endogenous neuronal activity self-organizes during particular brain states. Recent neuroimaging studies have demonstrated systematic relationships between resting-state and task-induced functional connectivity (FC). In particular, continuous task studies, such as movie watching, speak to alterations in coupling among cortical regions and enhanced fluctuations in FC compared to the resting-state. This suggests that FC may reflect systematic and large-scale reorganization of functionally integrated responses while subjects are watching movies. In this study, we characterized fluctuations in FC during resting-state and movie-watching conditions. We found that the FC patterns induced systematically by movie-watching can be explained with a single principal component. These condition-specific FC fluctuations overlapped with inter-subject synchronization patterns in occipital and temporal brain regions. However, unlike inter-subject synchronization, condition-specific FC patterns were characterized by increased correlations within frontal brain regions and reduced correlations between frontal-parietal brain regions. We investigated these condition-specific functional variations as a shorter time scale, using time-resolved FC. The time-resolved FC showed condition-specificity over time; notably when subjects watched both the same and different movies. To explain self-organisation of global FC through the alterations in local dynamics, we used a large-scale computational model. We found that condition-specific reorganization of FC could be explained by local changes that engendered changes in FC among higher-order association regions, mainly in frontal and parietal cortices.