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3Dipartimento di Fisica, “Sapienza” Università di Roma and Sezione INFN Roma1, P.A. Moro 5, 00185 Roma, Italy
4Theoretical Physics Department, CERN 1 Esplanade des Particules, Geneva 23 CH-1211, Switzerland

(Received 3 August 2018; revised manuscript received 6 February 2019; published 28 February 2019)

The nature of dark matter is one of the longest-standing puzzles in science. Axions or axionlike particles
are a key possibility and arise in mechanisms to solve the strong CP problem, but also in low-energy limits
of string theory. Extensive experimental and observational efforts are actively looking for “axionic”
imprints. Independent of their nature, abundance, and contribution to the dark matter problem, axions form
dense clouds around spinning black holes, grown by superradiant mechanisms. It was recently suggested
that once couplings to photons are considered, an exponential (quantum) stimulated emission of photons
ensues at large enough axion number. Here we solve numerically the classical problem in different setups.
We show that laserlike emission from clouds exists at the classical level, and we provide the first
quantitative description of the problem.
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Introduction.—The existence of dark matter (DM) is
established beyond any reasonable doubt. It manifests itself
clearly and unequivocally through gravitational inter-
actions, but its nature and properties remain as elusive
today as a century ago. Decades of searches hinging on
interactions between DM and the standard model have all
come back empty handed. The advent of gravitational-
wave (GW) astronomy promises to open a new chapter in
our understanding of this hitherto invisible universe [1].
The equivalence principle assures us that DM behaves
gravitationally as any other matter and points to gravity as
the key to unlock some of the mysteries of the missing
matter.
The number of possible candidates is too large to

enumerate here, and DM could be composed of a number
of different particles. Appealing candidates are axions or
axionlike particles, first introduced to solve the strong CP
problem in QCD [2]. These are strong candidates for cold
DM [3–5]. A plenitude of ultralight axionlike bosons
might also arise from moduli compactification in string
theory. In this “axiverse” scenario, a landscape of light
axionlike fields can populate a mass range down to the
cosmological scale, ∼10−33 eV [6,7]. Irrespective of their
origin, the seemingly empty arena between the

electroweak (MeV) and the cosmological scale raises
the question of weather new fields might exist somewhere
between those scales.
Ultralight axions are expected to couple very weakly

to ordinary matter, making their detection extremely
challenging [8]. However—even with negligible initial
abundance—such fields trigger superradiant instabilities
around massive spinning black holes (BHs) [9–14]. The
instability extracts rotational energy away from the spin-
ning BH and deposits it into an axion cloud with high
occupation number [14]. Eventually, GW emission domi-
nates over the superradiant growth, leading to a secular
spin-down and decay of the cloud. Such systems are a
promising source of GWs that can be detected with current
and future detectors [15–22].
The above picture neglects the coupling to matter,

expected to be very weak. However, the (quantum) stimu-
lated emission of photons can be enhanced in highly dense
axionic environments [23,24], leading to the conjecture that
blasts of light could be emitted from BH systems [25,26].
All the studies so far relied on adiabatic and flat-space
approximations, and some of the conclusions are contra-
dictory. In this Letter (further details are available in
Ref. [27]), we show, by numerically solving Maxwell’s
field equations coupled to an axion field in a Kerr back-
ground, that electromagnetic (EM) fields can be exponen-
tially amplified in such environments, even at the classical
level. Our results provide convincing evidence that, for a
given axion coupling, bursts of EM radiation are emitted by
the cloud above a critical value for the axion’s amplitude,
with potentially observable consequences.
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Setup.—Our starting point is the action describing a real
massive (pseudo)scalar field Φ with axionic couplings to
the EM field (we use geometrical units G ¼ c ¼ 1 unless
otherwise stated),

L¼R
k
−
1

4
FμνFμν−

1

2
gμν∂μΦ∂νΦ−

μ2

2
Φ2−

kaxion
2

Φ�FμνFμν:
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The mass of the scalar Φ is given by mS ¼ μℏ, Fμν ≡
∇μAν −∇νAμ is the Maxwell tensor, and �Fμν ≡ 1

2
ϵμνρσFρσ

is its dual. We use the definition ϵμνρσ ≡ ð1= ffiffiffiffiffiffi−gp ÞEμνρσ,
where Eμνρσ is the totally antisymmetric Levi-Cività sym-
bol with E0123 ¼ 1. The quantity kaxion is a constant. The
scalar and EM field satisfy the following equations of
motion:

ð∇μ∇μ − μ2ÞΦ ¼ kaxion
2

�FμνFμν; ð2aÞ

∇νFμν ¼ −2kaxion�Fμν∇νΦ: ð2bÞ

While for generic axionlike particles kaxion is independent
of the axion massmS, for the QCD axion they are related by
(see, e.g., [28])

ffiffiffi

ℏ
p

kaxion
∼ ð1013–1016Þ

�

10−5 eV
mS

�

GeV; ð3Þ

where the specific order of magnitude is model dependent.
To be as general as possible, we instead take kaxion to be an
additional free parameter of the theory. It can be shown that
the backreaction of the axion and vector field on the
geometry is negligible [17]. Therefore, we focus on
Eqs. (2a) and (2b) on a fixed Kerr background. We impose
the Lorenz condition on the vector field,

∇μAμ ¼ 0: ð4Þ

To formulate Eqs. (2a) and (2b) as a Cauchy problem, we
use the standard 3þ 1 decomposition of the metric

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð5Þ

where α is the lapse function, βi is a shift vector, and γij is
the three metric on a spacial hypersurface. Furthermore, by
using a normal vector nμ to the spatial hypersurface, the
vector field Aμ can be decomposed as

Aϕ ¼ −nμAμ; Ai ¼ γjiAj: ð6Þ

We also introduce the EM fields

Ei ¼ γijF
jνnν; Bi ¼ γij

�Fjνnν ð7Þ

and the scalar momentum Π

Π ¼ −nμ∇μΦ: ð8Þ

Finally, we use the constraint damping variable Z to
stabilize the numerical time evolution. The evolution
equation for the axion field is written as

∂tΦ ¼ −αΠþ LβΦ;

∂tΠ ¼ αð−D2Φþ μ2Φþ KΠ − 2kaxionEiBiÞ
−DiαDiΦþ LβΠ:

From Maxwell Eq. (2b) and the Lorentz gauge condition,
we find

∂tAi ¼ −αðEi þDiAϕÞ − AϕDiαþ LβAi; ð9Þ

∂tEi ¼ α½KEiþDiZ− ðD2Ai−DkDiAkÞ�
þ 2αkaxionðϵijkEkDjΦþBiΠÞþ ϵijkDkαBjþLβEi;

∂tAϕ ¼ αðKAϕ −DiAi−ZÞ−AjDjαþLβAϕ; ð10Þ

∂tZ ¼ αðDiEi − κZÞ þ 2kaxionαBiDiΦþ LβZ: ð11Þ

Finally, we get Gauss’s law as a constraint equation,

DiEi þ 2kaxionBiDiΦ ¼ 0: ð12Þ

We use Cartesian Kerr-Schild coordinates ðt; x; y; zÞ [29].
The quantities extracted from our numerical simu-

lation are multipolar components of the physical variables
Φ0;Φ1; FFi ≡ ðFμνFμνÞi; ðTEM

tr Þi, with

X0ðt; rÞ ≔
Z

dΩXðt; r; θ;ϕÞY00ðθ;ϕÞ; ð13Þ

X1ðt; rÞ ≔
Z

dΩXðt; r; θ;ϕÞYRðθ;ϕÞ: ð14Þ

TEM
tr is the ðt; rÞ component of the energy momentum

tensor of the EM field, Ylmðθ;ϕÞ are spherical harmonics,
and 2YRðθ;ϕÞ ¼ Y1;1 þ Y1;−1.
Without loss of generality, we use as initial data the

following profile:

Φðt; r; θ;ϕÞ ¼ A0rMμ2e−rMμ2=2 cosðϕ − ωRtÞ sin θ; ð15Þ

shown to yield a good approximation to the bound states
around a BH of mass M and angular momentum J ¼ Ma
[17,30]. Here A0 is an arbitrary amplitude related to the
mass in the axion cloud, and ωR ∼ μ is the bound state
frequency. We use the constraint-satisfying initial data for
the EM field, Ai ¼ Aϕ ¼ Er ¼ Eθ ¼ 0, and
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Eϕ ¼ E0e−ðr−r0=wÞ
2ΘðθÞ; ð16Þ

where E0, w, and r0 are arbitrary parameters describing the
initial data. Here, ΘðθÞ determines the θ dependence of the
initial data; the results below refer to Θ ¼ 1 [31].
The evolution equations were integrated using fourth-

order spatial discretization and a Runge-Kutta method.
Results I: Instability in flat space.—A simple dimen-

sional analysis indicates that the relevant quantity is
kaxionΦ, independent of how the axion Φ was created or
grown. This conclusion is consistent with a recent flat-
space analysis [26]. Therefore, to characterize the process,
we start with initial conditions (16) for the EM field, while
“freezing” the axion [i.e., the Klein-Gordon equation is not
evolved, and the axion is described by Eq. (15) at all times].
Superradiant instabilities have a typically large timescale,
and this should be a rather good approximation. The
background spacetime is Minkowski. Both of these
assumptions will be dropped when we discuss the Kerr
background, where we confirm that these approximations
provide a good qualitative picture of the problem.
We calculated the time evolution for several different

kaxionA0, μM ¼ 0.1, 0.2, and 0.3. The behavior of the EM
fields are shown in Fig. 1. These results are qualitatively the
same for different backgrounds and different initial con-
ditions. When the coupling kaxionA0 is small, the initial EM
fluctuation dissipates and seems to vanish exponentially (a
zero EM field is an exact solution of the field equations).
On the other hand, when the coupling kaxionA0 is larger

than a certain critical value kcriticalaxion A0, the EM field grows

exponentially, as is apparent from the lower panel. We find
that for supercritical couplings, the oscillation frequency of
the electric or magnetic field is ωEM ∼ μ=2, in agreement
with previous works [25,26].
In the supercritical regime, the EM fields grow expo-

nentially with time ∼eλt (this agrees with one analytical
analysis in flat space [26], but not with the general
statements on Kerr backgrounds [25]). We estimate the
exponential growth rate λ of the electric field using best fits
to the local maxima. The rate λ (evaluated at r ¼ 60M) is
shown in Fig. 2 for different values of the coupling kaxionA0

and substantiates the claim that, even in Minkowski back-
grounds, there is indeed a critical coupling below which no
instability sets in. We also note that a flat-space analysis of
a uniform EM field and a uniform axion field finds
λ0 ¼ μkaxionA0, with no critical coupling [26]. Our results
for the rate are consistent with this estimate, in the
supercritical regime. The critical value for the coupling
is related to the nonuniformity of the field [27]. Since we
are solely interested in axion clouds here, we do not explore
this subject any further.
One important result born out of our numerical calcu-

lations is that a time-dependent axion is a crucial ingredient
in the triggering of the instability (we did evolve also
Maxwell equations for time-independent axions and no
instability was observed). For Φ0ðtÞ ¼ const, Eq. (2b) on a
flat background can be reduced to a set of two-coupled
radial differential equations for the vector components,
which acquire an effective mass μ2eff ¼ −4k2axionΦ0ðtÞ2 < 0.
For Φ0ðrÞ ¼ const, one finds μ2eff ¼ 4k2axionΦ0ðrÞ2 > 0,
therefore suggesting that the instability can be understood
as a tachyoniclike instability, which is triggered only for
time-dependent axions.
Results II: Blasts of light in Kerr.—We now consider a

background geometry described by a Kerr BH of mass M
and angular momentumMa2 and evolve both the axion and
the EM fields.

10-10
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

F
F

0M
2 A

0-2
kaxionA0=0.01

∝exp(-0.01t/M)

10-5

10-4

10-3

10-2

10-1

100

101

102
103

 0  100  200  300  400  500

t/M

kaxionA0=0.4
∝exp(0.03t/M)

FIG. 1. Time evolution of the monopole part of the EM scalar
FμνFμν for a coupling Mμ ¼ 0.2 at r ¼ 20M when kaxionA0 ¼
0.01 (upper panel) and kaxionA0 ¼ 0.4 (lower panel), in a
Minskowski background. The scalar field is kept fixed and
described by (15). The initial profile is described by
ðE0=A0; w=M; r0=MÞ ¼ ð0.001; 5.0; 40.0Þ, but the qualitative
features of the evolution are independent of these. For small
couplings kaxionA0 there is no instability and the initial EM
fluctuation decays exponentially. For large couplings, on the
other hand, an exponential growth ensues.
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FIG. 2. The relation between the growth rate Mλ and coupling
kaxionA0 in a Minkowski background with a scalar frozen to be
given by (15). The rate is extracted from the x or y component of
the electric field at r ¼ 60M. The instability is only present for
large enough couplings, strongly suggesting the existence of a
critical coupling kaxionA0. Such conclusions are consubstantiated
by an analytical description of this system [27].
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We find that there is still a critical coupling beyond
which an instability arises, but now a new stage sets in at
late times. This new stage appears because we evolve the
axion as well. For supercritical values of the coupling kaxion,
the time evolution can be divided into three phases, as seen
in Fig. 3. The first, prompt phase is a transient where the
initial EM fluctuation travels through the axion cloud and
dissipates. During this phase, the EM field hardly affects
the axion cloud. Subsequently, and excited by this prompt
signal, the axion cloud transfers (through the coupling)
energy to the EM field, leading to a growth of the EM field
and a suppression of the axion. We find that after this burst
of radiation the new coupling is now below the critical
value and the system is stable. A further unstable phase
would need to wait for the depleted axion to be replenished
via superradiance. In line with the Minkowski results, the
initial instability growth seems to be of the form eλt.
We find that the dipolar component of the EM field FF1

is nonzero and around 2 orders of magnitude smaller than
FF0 at the extraction radius of the figure. When the EM
fields become large enough, the energy dissipates as a burst
of light. The time evolution of the energy flux for a
supercritical value of the coupling is shown in Fig. 3.
The flux indeed grows exponentially, at a rate that is
independent of initial conditions (and which can be read off
either from FFi or the fluxes). Such exponential growth
leads to energy dissipation, leading to axion depletion and
to a final cloud that is no longer in the supercritical regime.
Our results are only weakly dependent on the BH spin,

which controls the superradiant growth and dictates the size
to which the cloud grows. But the timescales of the bursts

that we are studying are much smaller than the typical
superradiant timescales. Therefore, the only quantity of
relevance here is the magnitude of the scalar and therefore
of the coupling, which dictates if an instability occurs
or not.
We found that the maximum value of TtrM2A−2

0 (at
r ¼ 100M, already far from the axion cloud that peaks at
r ∼ 50M for Mμ ¼ 0.2) is typically 10−4–10−3. Using the
relation between the amplitude of the axion cloud A0 and
the mass of the cloud MS [17], we find the following peak
luminosity for μM ¼ 0.2, and kaxionA0 ¼ 0.3–0.4,

dE
dt

¼ 5.0 × 10−6
�

MS

M

�

c5

G
: ð17Þ

Our results show that, for sufficiently large couplings kaxion,
axion clouds around BHs will eventually transfer a fraction
of its energy to the EM field. Using a critical value for
the instability kaxionA0 ∼ 0.2–0.3, the relation between the
amplitude of the axion cloud A0, and the mass of the cloud
MS [17], we find that the instability develops for axion
couplings

kaxion ≳ 2

�

M
MS

�

1=2
ðμMÞ−2; ð18Þ

which implies

ffiffiffi

ℏ
p

kaxion
≲ 6 × 1018

�

MS

M

�

1=2
ðμMÞ2 GeV: ð19Þ

Finally we note that for scalars in a Kerr background the
dominant-mode superradiant instability timescale is given
by tinst ∼ 48M=½ða=MÞðMμÞ9� [9,11], while our results
suggest that the timescale for the EM instability is given
by tEM ∼ ðμkaxionA0Þ−1 ∼ 10Mk−1axionðM=MSÞ1=2ðμMÞ−3,
where we used the relation between the amplitude of the
axion cloud A0 and the mass of the cloud MS [17]. From
Eq. (18), it follows that whenever kaxion is sufficiently large
for the instability to occur, then tEM ≲ 5M=ðMμÞ.
Therefore, the EM instability always has much shorter
timescales than superradiance.
Results III: Blasts vs leakage.—So far, we assumed that

the axion grew through superradiance to some predeter-
mined value. If kaxionΦ is supercritical at that point, our
results show that an instability kicks in and an EM blast
ensues. A possible evolution of the system would then
consist of stages of superradiant growth followed by EM
blasts. However, it is well possible that, as the field grows,
the evolution eventually leads to a constant EM flux locked
into the slow superradiant evolution. It is extremely
challenging to test these two scenarios, since superradiant
timescales are extremely large. However, one can introduce
superradiantlike growth on shorter timescales with the
addition of a simple C∂Φ=∂t term to the Klein-Gordon
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FIG. 3. Time evolution ofΦ1 (upper panel), FF0 (middle panel)
at r ¼ 20M, and the energy flux (lower panel) for an axion with
mass Mμ ¼ 0.2 around a BH with a ¼ 0.5M. The coupling
constant is supercritical with kaxionA0 ¼ 0.3. The initial EM
profile is described by ðE0=A0; w=MÞ ¼ ð10−3; 5Þ; ð10−3; 20Þ;
ð10−4; 5Þ for run 7,8,9, respectively, and r0 ¼ 40. The overall
behavior and growth rate of the instability at large timescales are
insensitive to the initial conditions.
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equation (2a). Such term was indeed used by Zel’dovich in
his seminal study and can be shown to mimic accurately the
correct description of many superradiant systems [32–35].
Such a Lorentz-invariance-violating term introduces a
superradiantlike instability, with a timescale on the order
1=C, which we can tune to be within our numerical limits.
A result of one such evolution with C ¼ 4 × 10−4 is shown
in Fig. 4. The axion is initially subcritical, but the super-
radiant-mimicking C-term drives it supercritical and trig-
gers the instability. The instability proceeds as described
previously. To conclude, our results show that bursts of EM
radiation can indeed occur [36].
Discussion.—The mere existence of light scalars will

trigger superradiant instabilities around Kerr BHs and lead
to the depositing of the BH rotation energy in a “cloud.”
This is a very generic feature, driven only by gravity.
Couplings to the standard model field are expected to
occur, and our results show that instabilities are triggered,
wherein a fraction of the cloud’s energy is transferred to
EM blasts. The EM blasts carry a very precise frequency
and can be described as laserlike emission. Our results
show a number of fine details not present in previous
simplified approaches to the quantum version [25,26]. For
example, the EM field does not show signs of initial growth
at the superradiant rate, nor do we see evidence for a et

2

burst. In addition, our results are consistent with the
existence of a critical coupling, indicating that higher
luminosities than previously reported may be possible.
For the “typical” coupling of the QCD axion with

photons, this process is expected to only become relevant

for axion masses above ≳10−8 eV, and therefore for BHs
with masses ≲0.01 M⊙, and could potentially explain fast
radio bursts observed in the Universe. The smallness of the
BH mass needed for this process to be efficient therefore
implies that for the QCD axion it can only occur around
hypothetical primordial BHs formed in the early Universe.
However, this limit is highly dependent on the coupling
constant, and for generic axionlike particles it could
become relevant for stellar mass BHs.
Our results have implications for the gravitational-wave

detection of such systems [15–22], since EM bursts act as a
limiter to the cloud size and therefore on the maximum
amount of waves generated. Plasma effects and other
observational issues are discussed in a separate publication
[27] (see also Refs. [26,37]).
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