Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ultrafast Relaxation Dynamics of the Antiferrodistortive Phase in Ca Doped SrTiO3

MPG-Autoren
/persons/resource/persons222262

Fechner,  M.
Quantum Condensed Matter Dynamics, Condensed Matter Dynamics Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Materials Theory, ETH Zürich;

Rettig,  L.
Swiss Light Source, Paul Scherrer Institute;
Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society;

Paarmann,  A.
Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society;

Noack,  J.
Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1805.00580.pdf
(Preprint), 3MB

PhysRevLett.121.055701.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

Supplementary.pdf
(Ergänzendes Material), 2MB

Zitation

Porer, M., Fechner, M., Bothschafter, E., Rettig, L., Savoini, M., Esposito, V., et al. (2018). Ultrafast Relaxation Dynamics of the Antiferrodistortive Phase in Ca Doped SrTiO3. Physical Review Letters, 121(5): 055701. doi:10.1103/PhysRevLett.121.055701.


Zitierlink: https://hdl.handle.net/21.11116/0000-0001-EE2D-2
Zusammenfassung
The ultrafast dynamics of the octahedral rotation in Ca:SrTiO3 is studied by time-resolved x-ray diffraction after photoexcitation over the band gap. By monitoring the diffraction intensity of a superlattice reflection that is directly related to the structural order parameter of the soft-mode driven antiferrodistortive phase in Ca:SrTiO3, we observe an ultrafast relaxation on a 0.2 ps timescale of the rotation of the oxygen octahedron, which is found to be independent of the initial temperature despite large changes in the corresponding soft-mode frequency. A further, much smaller reduction on a slower picosecond timescale is attributed to thermal effects. Time-dependent density-functional-theory calculations show that the fast response can be ascribed to an ultrafast displacive modification of the soft-mode potential towards the normal state induced by holes created in the oxygen 2p states.