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Elevated neopterin levels in wild, healthy
chimpanzees indicate constant investment
in unspecific immune system
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Abstract

Background: Ecological immunology proposes that the optimal immune defence, and the costs coming with it, vary
across environments. In environments with higher pathogen load, the immune system should experience greater
challenges and, therefore, investment in maintaining it should be higher. The biomarker neopterin allows monitoring
of innate immune responses, and is therefore an ideal tool to investigate the effects of ecological variables on the
immune system. Here, we compared urinary neopterin levels of apparently healthy chimpanzees without acute
symptoms of sickness across two environments: in captivity (22 zoos) and in the wild (two populations).

Results: Our results revealed that urinary neopterin levels were nearly twice as high in wild compared to captive
chimpanzees, independent of chimpanzee subspecies.

Conclusion: We conclude that wild chimpanzees experience more frequent immune challenges in comparison to
captive individuals. Therefore, wild individuals have to allocate more energy to immune function and away from
reproduction and growth. Our data indicate that the generally delayed development of wild animals in comparison to
captive individuals might not only be related to lower energy intake but might result from greater energy allocations
to immune function. Finally, our data highlight the importance of understanding immune costs for accurate
characterization of energy budgets in animals.
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Background
Life-history theory (LHT) concepts show the demands
and challenges that influence immune function in an eco-
logical context. Increased energy allocation to immune
function is an investment in maintenance and finally in
survival, but leaves less energy for growth or reproduction
[1–3]. Various assessments of energy allocation to the im-
mune system suggest that maintenance and stimulation of
immune functions are energetically expensive [1, 4, 5],
thereby imposing a significant burden to organisms [2, 6,
7]. Therefore, life-history patterns among vertebrates have
been shaped, among other factors, by general patterns of

immunity and immune responses associated with
environment-specific pathogens [5].
The mammalian immune system is divided into two

major functional categories: innate (or constitutive) and
adaptive (or acquired) immunity. Innate immunity con-
sists of primary mechanisms providing the first line of
disease defence. Although not fully developed in neo-
nates, innate immunity develops faster than adaptive im-
munity. Such defences include both physical barriers
and biochemical factors—e.g., anatomical and physio-
logical barriers, inflammatory mediators, and cellular
components [8]. Cellular components like macrophages
are stimulated by interferon–γ and co-stimulated by
tumour-necrosis factor and endotoxins. Interferon–γ is
released by T-cells after antigen recognition; they release
neopterin in a high and constant rate into body fluids.
Therefore, neopterin is an ideal marker to monitor the
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degree of the innate immune response activation [9, 10].
So far, investigations of immune system responses or
changes in immune functioning have been performed
mainly invasively—e.g., in blood samples in humans, do-
mestic animals, and wild living birds [11–14]. However,
increases in neopterin concentrations in serum during
the clinical course of infections are paralleled by the
same patterns in urine [15], and the measurement of
urinary neopterin levels in non-human primates with a
commercial neopterin assay has been recently validated
[16, 17].
In humans, many Indigenous people (for definition,

please see Gracey & King [18]), experience low standards
of health, which are associated with poverty, malnutrition,
overcrowding, poor hygiene, and environmental contam-
ination. They are exposed to a high rate of disease-causing
infections. Moreover, infections are more frequently fatal
in Indigenous people [18]. However, a comparison of hu-
man urinary neopterin levels, as an indicator of nonspe-
cific immune system activation, indicates across studies
that individuals living in environments with lower levels
of pathogen prevalence indeed have lower levels of im-
mune challenge, as indicated by lower urinary neopterin
levels [15, 19]. Because the neopterin measurements were
run with different methods (for example LC-MS in Fuchs
et al. [15] and enzyme-immuno assay in Filteau et al. [19]),
and in different laboratories [20], these comparisons must
be interpreted with caution. Additionally, vaccination
studies in humans indicate differences in natural immune
background across human populations. One factor influ-
encing the variation in immune responses to viral vaccines
is genetic polymorphisms of the human leukocyte antigen
system. However, in rural human populations, successful
vaccination requires de-worming of patients prior to the
vaccine’s administration [21, 22], suggesting these popula-
tions have a constantly activated innate immune system
preventing a specific immune response to the vaccination.
Indirect evidence of potential health differences across hu-
man populations were shown in gut microbiome, which is
vital for immune function, where differences in micro-
biome diversity were found between non-industrialized,
rural communities from Africa and South America; and
western industrialized populations [23].
Wild primates routinely sustain wounds and encounter

infectious disease [24]. They face a diverse array of para-
sites and pathogens, which potentially reduce host sur-
vival and reproductive success [24–28]. However, wild
animals have a long evolutionary history with a vast
number of naturally occurring microorganisms, shaping
their host-pathogen interaction [29]. In contrast, captive
individuals are mainly exposed to pathogens of human
origin to which they might not be well adapted. Those
human pathogens are especially a threat to great ape
species due to recent common ancestry [30].

Furthermore, captive animals may also face increased
risk from unfamiliar infectious diseases of animal origin
and may be more vulnerable to infection due to inad-
equate nutrition and environmental conditions [31, 32].
Studies comparing immune system components in the
same species in different environments are rare and
found contrasting results. First evidence for differences
in immunity in wild and captive environments was
found in a bird species. Some blood markers of immun-
ity such as eosinophil concentrations were higher in wild
birds, and some immune markers such as total leukocyte
count were comparable in the two environments [33]. In
contrast, in a recent study in serum of dolphins, free liv-
ing individuals had elevated markers related the immun-
ity such as lymphocytes, eosinophils and platelets
compared to captive ones [34]. However, all makers
measured in the study, whether related to endocrine sys-
tem or immune system, were in general higher in wild
compared to captive living individuals [34], and there-
fore results have to be interpreted with caution. Add-
itionally, so far all studies used serum samples, which
are impossible to collect in most wild living species.
Therefore, one of our aims was to establish a marker
that allows repeated non-invasive sampling to investigate
the effect of immune energetic burden on life-history
patterns.
To evaluate the impact of immune system challenges

in different environments, we investigated patterns of
urinary neopterin levels as a measure for the unspecific
immune response in chimpanzees living in 22 zoos and
in two natural environments. We examined potential
differences in immune response, which might affect en-
ergy allocation and thereby influence life-history
trade-offs. We predict that urinary neopterin levels are
lower in zoo housed chimpanzees because wild living
chimpanzees are exposed to a large number of microor-
ganisms, while zoo chimpanzees are treated, vaccinated,
and screened against a variety of pathogens [35]. Alter-
natively, captive chimpanzees may have higher urinary
neopterin levels because they are exposed to a higher
variety of human pathogens to which they are not
adapted.
Urine samples were collected from chimpanzees

housed in zoos and wild living chimpanzees coming
from two field sites, one West African chimpanzee (Pan
troglodytes verus) field site, and one East African chim-
panzee (Pan troglodytes schweinfurthii) field site. This
comparative approach controls for potentially unusual
urinary neopterin levels due to higher pathogen loads
at one field site than elsewhere. In addition, this ap-
proach controls for potential genetic differences be-
tween chimpanzee subspecies, since captive
individuals belong to different chimpanzee subspecies
or are sub-specific hybrids.
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Results
Both mean and median urinary neopterin levels in both
wild populations were nearly twice as high as the levels
of captive chimpanzees (Table 1). The full/null model
comparison (χ2 = 28.608, df = 8, P < 0.001) revealed that
the environment was a significant predictor of urinary
neopterin levels (Table 2), with significant lower urinary
neopterin levels in captive chimpanzees in comparison
to wild living individuals (captive vs. Sonso: Estimate =
0.558; SE = 0.122; P < 0.001; captive vs. Taï: Estimate =
0.555; SE = 0.112; P < 0.001; Fig. 1). However, urinary
neopterin levels from Sonso were not different from
those from Taï (Estimate 0.003; SE 0.118; P = 0.978) (Fig.
1), indicating that urinary neopterin levels of wild chim-
panzees do not differ by subspecies or specific pathogens
in one field site.

Discussion
The 43% higher urinary neopterin levels in wild chim-
panzees most probably do not reflecting acute infections,
but suggest a permanently challenged immune system
faced with a high diversity of microorganisms and / or a
higher disease burden. This assumption is supported by
an even further increase in urinary neopterin levels in
wild chimpanzees at Taï during a respiratory disease out-
break [36]. However, while there are non-infectious
health conditions that lead to elevated neopterin levels
such as sepsis, malignancies, autoimmune diseases, heart
failure, and coronary artery diseases [37], we do not have
any evidence that such conditions created the pattern
observed in this study. Independently of the causes of
higher neopterin levels in wild chimpanzees, constantly
elevated urinary neopterin levels indicate a permanent
energetic burden for wild chimpanzees, allocating energy
into maintenance, and thereby away from other traits
such as growth and reproduction [38, 39].
Developmental differences between wild and captive

primates are well documented. For example, captive fe-
male chimpanzees reach menarche and give first birth at
a younger age than chimpanzees in the wild [40]. Add-
itionally, in wild great apes, tooth eruption is in some
teeth two years later than in captivity [41, 42], but ranges
overlap extensively [43]. These differences in the pace of
development between wild and captive individuals were
assumed to be related to constant energy abundance

without seasonal variation and inter-individual variation
in captive animals [43, 44]. However, differences might
also exist in how much of the available energy needs to be
allocated into immune function. For example, in humans
living in developing countries, children with higher levels
of immune activation have impaired growth [45].
Age effects on neopterin levels were found in a num-

ber of studies. In humans, children have higher urinary
neopterin levels, declining with increasing age, which
then increase again with senescence in adulthood. How-
ever, this effect might be mainly driven by age-related
changes in creatinine clearance rate, since creatinine was
used as a correction factor for urine concentration [15].
A pattern of increasing urinary neopterin levels with in-
creasing senescence was found as well in Barbary ma-
caques [46]. Such an effect might also be caused by an
increase in chronic health problems with increasing age
[47, 48]. However, age dependent effects are less pro-
nounced than changes in clinical neopterin levels
changes [15] and might therefore be difficult to find in
populations experiencing constant immune challenge.
For example, no age effect was found in two studies on
urinary neopterin levels in wild chimpanzees [36, 49],
and urinary neopterin levels were independent of sex
and age as well in this study.

Conclusion
Our data support the idea that environmental gradients
create varying selective pressures on immune systems
that may result in different optimal life history strategies
[50]. Individuals confronted with higher pathogen load
or higher microorganism diversity and thereby with
higher immune system activation, allocate energy into
maintenance and less into other factors like growth and
reproduction, which would allow captive individuals to
grow faster and to reproduce earlier than wild living ani-
mals. Therefore, the measurement of immune system ac-
tivation is essential for a more accurate characterization
of energy budgets of animals and a better understanding

Table 1 Description of urinary neopterin levels (μmol/mol
creatinine) in chimpanzees living in captivity (N = 58), at Taï (N
= 75) and Sonso (N = 45)

Captive Taï Sonso

Mean 203.2 345.6 302.9

Median 143.0 247.3 262.9

Stdev. 252.5 334.8 147.8

Table 2 Results of the full-null model comparison obtained by
analysing urinary neopterin levels from captive and wild living
chimpanzees with sex, age, day-time and storage time as fixed
effect and animal ID as a random effect (SE = standard error,
bold numbers indicate significance)

Term Estimate SE DF χ2 P-value

Intercept 4.900 0.116

Age at sample collection −0.044 0.053 1 0.617 0.413

Sex 0.090 0.092 1 0.964 0.326

Environment 0.708 0.158 2 22.41 < 0.001

Day-time 0.085 0.062 1 1.852 0.174

Storage time 0.094 0.065 1 2.050 0.152
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of the role of immunity in the evolution of life-history
strategies [51].

Methods
We measured urinary neopterin levels in 178 samples of
apparently healthy chimpanzees collected at random
from two different environments (captive and wild). ‘Ap-
parently healthy’ was defined as a chimpanzee not show-
ing any current chronic or acute symptoms of sickness.
The captive environment (22 zoos) was represented by
58 urine samples from 32 females and 26 males, col-
lected between 2006 and 2014. Samples representing the
wild environment were collected at two sites, communi-
ties of the Taï chimpanzee project in Taï National Park,
Côte d’Ivoire (West Africa), and the Sonso community,
Budongo Forest, Uganda (East Africa). In Taï, a number
of acute diseases, including anthrax and respiratory in-
fections, have been documented [52–54], which are ab-
sent in Sonso. From the Taï chimpanzees, samples of 14
females (35 samples, average of 2.5 samples per individ-
ual) and 15 males (40 samples, average 2.7 samples per
individual) collected in 2009 were analysed. From the
Sonso community, urine samples collected between
2009 and 2010 from 17 females (23 samples, average 1.4
samples per individual) and 12 males (22 samples, aver-
age 1.8 samples per individual) were used. The age range
of the captive chimpanzees was between 4 and 53 years
(median: 15 years), in Sonso individuals ranged between

11 and 50 years (median: 17 years), and in Taï between 2
and 45 years (median: 15 years). For 49 of the 58 captive
chimpanzees the exact birthdate was available from the
studbook. For three captive and three Taï chimpanzees,
only the year and month of birth were known, and for
these we set the day of birth to the 15th of the respective
month. For the remaining individuals, only the year of
birth was known, and in these cases, the day of birth
was set to June 15th of the respective year (all Sonso
chimpanzees, 15 Taï chimpanzees, and six captive chim-
panzees). All urine samples were non-invasively col-
lected in captivity and in the wild. For details on urine
collection protocols, see Behringer et al. [55] for captive
samples, Deschner et al. [56] for Taï samples, and Crock-
ford et al. [57] for Sonso samples. After collection, the
samples were frozen in the zoo or the field sites, and
transported frozen to the Max Planck Institute for Evo-
lutionary Anthropology (MPI-EVA) in Leipzig, Germany.

Urinary neopterin analyses
For the measurement of urinary neopterin levels in
chimpanzees, we used a commercial competitive neop-
terin ELISA (Neopterin ELISA, Ref. RE59321, IBL Inter-
national GmbH, Hamburg, Germany), validated for the
measurement of neopterin in urine of chimpanzees [16].
All urine samples were thawed, vortexed, and centri-
fuged. The captive chimpanzee urine was diluted 1:100
with the assay buffer of the supplier. Sonso samples were

Fig. 1 Measures of urinary neopterin levels corrected for creatinine (μmol/mol) from chimpanzees living in captivity (N = 58 samples), Taï (N = 75
samples) and Sonso (N = 45 samples). Individuals: Ncaptivity = 58 (26 males, 32 females), NTaï = 29 (15 males, 14 females), NSonso = 29 (12 males, 17
females). The y-axis is displayed on a log scale. The boxes illustrate the 25th and 75th percentiles, bars indicate medians, and circles
indicate outliers
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diluted 1:200 or 1:400, and the urine of the Taï chimpan-
zees 1:400 or 1:600. The assays were performed follow-
ing the instructions from the supplier and as described
in Behringer et al. [16]. All samples, standards, and con-
trols were measured in duplicate. To compensate for
variation in volume and concentration of the collected
urine, as well as to make the results comparable to hu-
man studies [19, 58–62], creatinine was measured, and
results are expressed in μmol/mol creatinine.

Statistical analyses
We used a general linear mixed model (GLMM, [63]) to as-
sess the impact of environment (test predictor with fixed ef-
fect) on the log transformed response variable urinary
neopterin. The model was fitted in R [64] using the func-
tion “lmer” provided in the package “lme4” [65]. To control
for the potential influence of day time, storage-time, age of
the animal at sampling, and the sex of the animal, these pa-
rameters were included as control predictors with fixed ef-
fects. As a random effect, we included animal ID, and we
included random slopes of age at sampling time, storage
time, and day time within animal ID, to keep type I error
rates at the nominal level of 5% [66, 67]. Age as well as the
time of sample collection (to control for diurnal variation)
was z-transformed to a mean of zero and a standard devi-
ation of one to achieve comparable estimates [68].
The required normal distribution and homogeneity of

residuals for the model were assessed by visual inspec-
tions of a histogram, a q-q plot of the residuals, and by
plotting residuals against fitted values. All model as-
sumptions were met. We assessed collinearity by deter-
mining variance inflation factors (VIF, [69]) using the
function “vif” of the R-package “car” [70] based on a
standard linear model excluding the random effects,
which revealed no problems (maximum VIF: 2).
We investigated the significance of the fixed effect envir-

onment, by comparing the full model with a null model, ex-
cluding the predictor variable, but retaining time of sample
collection, age and sex, and the random effect animal ID, as
well as the random slopes component, using a likelihood
ratio test [71]; (R function “anova”). To further explore the
effect of each specific environment on urinary neopterin
levels, we built two additional models, one compared the
captive neopterin levels with the levels from Taï and Sonso,
and the second model compared the levels of Sonso and
captive chimpanzees with Taï, with the same fixed effects,
random effect, and random slopes as in the full model. Sig-
nificance for all tests was set at the P = 0.05 level.
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EAZA: European Association of Zoos and Aquaria; EEP: European Endangered
Species Programmes; ELISA: Enzyme-linked Immunosorbent Assay;
ESB: European Studbooks; GLMM: General linear mixed model; LC-MS: Liquid
chromatography/mass spectrometry; LHT: Life-history theory; MPI-EVA: Max
Planck Institute for Evolutionary Anthropology; VIF: Variance inflation factors
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