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Abstract
Aim: The great variation in range sizes among species has fascinated ecologists for 
decades. Reef‐associated fish species live in highly spatially structured habitats and 
adopt a wide range of dispersal strategies. We consequently expect species with 
greater dispersal ability to occupy larger ranges. However, empirical evidence for 
such a positive relationship between dispersal and range size remains scarce. Here, 
we unveil the role of dispersal on the range size distribution of reef‐associated fishes 
using empirical data and a novel spatially explicit model.
Location: Tropical Eastern Pacific.
Major taxa studied: Reef‐associated fishes.
Time period: Underlying records are from the 20th and 21st centuries.
Methods: We estimated range size distributions for all reef‐associated fishes sepa‐
rated into six guilds, each with different dispersal abilities. We used a one‐dimen‐
sional spatially explicit neutral model, which simulates the distribution of species 
along a linear and contiguous coastline, to explore the effect of dispersal, speciation 
and sampling on the distribution of range sizes. Our model incorporates biologically 
important long‐distance dispersal events with a fat‐tailed dispersal kernel and also 
adopts a more realistic gradual “protracted” speciation process than originally used in 
neutral theory. We fitted the model to the empirical data using an approximate 
Bayesian computation approach, with a sequential Monte Carlo algorithm.
Results: Stochastic birth, death, speciation and dispersal events alone can accurately 
explain empirical range size distributions for six different guilds of tropical, reef‐associ‐
ated fishes. Variation in range size distributions among guilds are explained purely by 
differences in dispersal ability with the best dispersers being distributed over larger 
ranges.
Main conclusions: Neutral processes and guild‐specific dispersal ability provide a 
general explanation for both within‐ and across‐guild range size variation. Our results 
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1  | INTRODUC TION

What is driving the large natural variation in the range size of spe‐
cies (Gaston, 2003)? Ultimately, only a few ecological processes 
should be important in determining a species’ range size: dispersal 
to a new habitat, successful colonization of that habitat and (avoid‐
ance of) local extinction (Brown & Kondric‐Brown, 1977; Gaston & 
He, 2002; Hanski, 1982; Holt & Gomulkiewicz, 1996; MacArthur & 
Wilson, 1967). Besides these ecological processes, macroevolution‐
ary processes such as speciation and extinction also have important 
implications for range sizes as they affect the creation, division and 
removal of ranges at larger temporal scales (Anderson, 1985; Gaston 
& Chown, 1999). Dispersal is central to all the above processes, be‐
cause it is key both for the colonization of new habitats and for pop‐
ulation persistence in suboptimal habitats, which may otherwise go 
extinct (Brown & Kondric‐Brown, 1977; MacArthur & Wilson, 1967). 
Furthermore, dispersal promotes gene flow, which can impede spe‐
ciation while also bringing the genetic variability necessary for adap‐
tation and successful range expansion (Holt & Gomulkiewicz, 1996).

One group of organisms for which dispersal seems to be an es‐
pecially important driver of range size is reef fishes. These organ‐
isms occupy habitats that are by nature highly fragmented. The 
ability to disperse to these habitats should therefore be important 
for colonization, establishment and range expansion. However, 
despite theoretical expectations predicting a positive association 
between dispersal and range size (reviewed in Lester, Ruttenberg, 
Gaines, & Kinlan, 2007), empirical evidence for this in reef fishes 
remains scarce (Lester & Ruttenberg, 2005; Luiz et al., 2013; Mora 
et al., 2012; Ruttenberg & Lester, 2015). There are many possible 
explanations for the apparent lack of a positive range size–dispersal 
relationship; these reflect the many processes that potentially drive 
range size including speciation, local extinction, and range dynam‐
ics or changes during a species’ lifetime (Webb & Gaston, 2000, 
reviewed in Gaston, 2003). Firstly, range size is likely to vary with 
species age: older species might attain larger ranges than newly 
formed species (Webb & Gaston, 2000). However, until complete 
information on the age of all species is available, it will be difficult 
to test this and correct for it. Secondly, species range dynamics are 
affected by numerous ecological and evolutionary factors including 
biological interactions and the species’ behavioural and functional 
traits (Stahl, Reu, & Wirth, 2014). Thirdly, sampling intensity and 
detection probability vary across space and across species (Alzate, 
Zapata, & Giraldo, 2014; Dennis, Sparks, & Hardy, 1999), and such 
sampling biases may also drive variation in the apparent range size. 
Finally, stochastic events, especially during the early life of a species, 

may bring additional noise to the present‐day range size, making it 
difficult to find general patterns.

Dispersal is a complex trait that depends on an individual’s life 
stage in ways that are not easily quantifiable, for example, during 
the departure (initiation of dispersal, for instance during spawning), 
transfer (the pelagic stage of eggs and larvae) and settlement phases 
(Bonte et al., 2012). Due to this complexity, direct measurement of 
the entire dispersal process is hard to achieve; instead, researchers 
have used proxies of dispersal: traits that, based on the literature, 
are linked to dispersal (e.g., in fish body size, pelagic larval stage, 
type of egg). The choice of traits to investigate and the way to mea‐
sure them may influence the outcome of studies examining the role 
of dispersal on range sizes. For example, many correlative studies of 
reef fish dispersal have focused primarily on the larval stage (Lester 
& Ruttenberg, 2005; Lester et al., 2007; Mora et al., 2012, but see 
Luiz et al., 2013), thereby neglecting evidence that dispersal also 
occurs in earlier life stages as eggs and in later life stages as adult 
fishes (Addis, Patterson, Dance, & Ingram, 2013; Alzate, van der 
Plas, Zapata, Bonte, & Etienne, 2019; Appeldoorn, Hensley, Shapiro, 
Kioroglou, & Sanderson, 1994; Kaunda‐Arara & Rose, 2004; Leis, 
1978).

Pattern‐orientated correlative studies, which test for associa‐
tions between traits related to dispersal and range size, fail to in‐
corporate more mechanistic insights (Connolly, Keith, Colwell, & 
Rahbek, 2017). In contrast, mechanistic models make testable pre‐
dictions by explicitly accounting for the more fundamental processes 
affecting range size. Previous mechanistic studies have attempted 
to explain range size using colonization–extinction models (Hanski, 
1982) or models of population dynamics (Gaston & He, 2002). 
However, they were not developed to explain variation in range size 
across many species exploring several mechanisms. Here, we apply 
a variation of the unified neutral theory of biodiversity and biogeog‐
raphy (Hubbell, 2001), originally used to explain other macroecolog‐
ical patterns such as species abundance distributions, species–area 
relationships and beta diversity. One previous study used a neutral 
model to reproduce both spatial patterns in species richness and 
range size distributions, but it focused on short time spans rather 
than equilibrium behaviour and as such did not incorporate specia‐
tion (Rangel & Diniz‐Filho, 2005). Here, we extend the neutral model 
of Hubbell (2001) to include spatially explicit dynamics and a more 
realistic speciation process (Rosindell, Cornell, Hubbell, & Etienne, 
2010; Rosindell, Wong, & Etienne, 2008), both of which we expect 
to be important for a study of interspecific variation in range sizes. 
This mechanistic model provides a way to quantitatively assess how 
dispersal can influence species range size distributions, while at the 

support the theoretically expected, but empirically much debated, hypothesis that 
high dispersal capacity promotes the establishment of large range size.
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same time considering other interacting mechanisms, including sam‐
pling and speciation, which are known to affect range size (Gaston, 
2003). We test the ability of our model to explain variation in range 
size by comparing its predictions against empirical range size distri‐
butions of a complete reef fish assemblage in a well‐defined region: 
the Tropical Eastern Pacific (TEP). We make predictions of range size 
distributions for each of six distinct guilds with different dispersal 
characteristics. Dispersal is based on mobility traits (not directly 
measured) acting in both the early (egg and larval) and later (adult) 
life stages. Our model is neutral within each guild and so excludes 
any within‐guild niche‐based processes and individual differences. 
Crucially, by applying independent neutral models to each of the 
six guilds, we are able to focus on studying the effects of different 
dispersal abilities for each guild in isolation from other complicating 
factors such as environmental preference. With our spatially explicit 
model, we test firstly whether range size distributions within guilds 
of reef fishes can be explained by neutral factors alone, and sec‐
ondly whether variation in range size distribution across guilds can 
be explained by differences in dispersal ability. Our spatially explicit 
neutral model, which incorporates stochastic birth–death dynamics, 
speciation and dispersal, can generate testable predictions on range 
size distribution and species richness patterns.

2  | METHODS

2.1 | Reef‐associated fish data

From the online database “Shorefishes of the Tropical Eastern Pacific 
(SFTEP)” (Robertson & Allen, 2016), we collated spatial coordinates 
of species occurrences (43,810 records) for all bony fishes (575 spe‐
cies) associated with reef habitats reported in the TEP. We used 
only records inside the TEP region: between 24° N (outer coast of 
the Gulf of California, including all the inner coast) and 4° S (SFTEP, 
Robertson & Allen, 2016).

Reef fish species were classified into six different dispersal guilds 
according to traits related to dispersal: spawning mode and adult 
mobility. We classified spawning mode into two types: pelagic and 
non‐pelagic. Differences in this early life history trait might confer 
diverse capacities for dispersal (Leis et al., 2013; Riginos, Douglas, 
Jin, Shanahan, & Treml, 2011). Pelagic spawners release their eggs in 
the water column, which are passively transported by water currents 
until the larvae hatch and are able to better control active swim‐
ming (Leis et al., 2013; Stobutzki & Bellwood 1997). This increase in 
pre‐hatching dispersal might have strong effects on overall disper‐
sal in the pelagic environment (Leis et al., 2013). Contrary to pelagic 
spawners, for which both the egg and larval phases are pelagic, non‐
pelagic spawners either attach their eggs to the substrate, are live‐
bearers, or keep their eggs in the mouth or pouch until they hatch. 
Their larvae usually emerge at larger sizes and are more mature 
than the larvae of non‐pelagic spawners (Leis et al., 2013; Wootton, 
1992), resulting in an early control of active swimming, therefore 
affecting dispersal by reducing the pelagic interval (Bonhomme & 
Planes, 2000; Burgess, Baskett, Grosberg, Morgan, & Strathmann, 

2015; Leis, 2006; Leis et al., 2013; Munday & Jones, 1998). We classi‐
fied adult mobility following Floeter, Ferreira, Dominici‐Arosemena, 
and Zalmon (2004) as low, medium and high. Low adult mobility is 
associated with site‐attached species occupying small home ranges 
(< 10 m2). Medium adult mobility denotes species that are weakly 
mobile, relatively sedentary, with close association to the substrate 
and that can be distributed over the entire reef area (< 1,000 m2). 
High adult mobility is represented by species that show a wide hor‐
izontal displacement and occur in the water column (Floeter et al., 
2004). Mobility for each species was assigned depending on the tax‐
onomic level at which information was reported: species, genus or 
family adult mobility. In some cases, mobility information was not 
available, but could be assigned according to the biology of the spe‐
cies, for example, pearlfishes (family Carapidae), which are known to 
live inside the anal pore of sea cucumbers, were all classified as hav‐
ing low adult mobility. Information on spawning mode was obtained 
from the SFTEP online database (Robertson & Allen, 2016). Pelagic 
larval duration, although often used when studying range size of reef 
fishes, is not known for the majority (69%) of species in the TEP re‐
gion, so we cannot use it for this study.

2.2 | Measuring range size

The range size of each species was calculated using a novel metric 
developed for maximizing comparability between simulated and ob‐
served range sizes: coastline distance. In contrast with other tradi‐
tional metrics, for example, maximum linear distance and latitudinal 
and longitudinal extent (Gaston, 1996), coastline distance does not 
underestimate or overestimate range size due to the particular spa‐
tial configuration of the TEP (Supporting Information Appendix S1). 
We defined coastline distance as the contour distance (measured 
using units of 100 km) between the most distant points along the 
coastline where the species was reported. The east and west coasts 
of the Gulf of California are collapsed into a single line of habitat 
because the distance between opposite sides of the gulf is likely too 
small to substantially restrict dispersal across the gulf. All distance 
measurements were calculated in kilometres using the function geo‐
dist from the R package gmt (Magnusson, 2015) and transformed 
into relative values, where 100% is the coastline distance between 
the latitudes 24 N and 4 S.

2.3 | Richness gradients

To examine the species richness gradient along the TEP coast, we 
calculated species richness for each segment of 100 km of coast‐
line using all species within the six dispersal guilds. In addition, we 
calculated richness only for the TEP endemic species within the six 
dispersal guilds and for the TEP non‐endemic species. A species is 
considered to occur in each location (shown in Figure 1a) within 
its geographical range. For consistency, we treated location in the 
same way as the estimation of range sizes: east and west coasts of 
the Gulf of California were collapsed into a single line of habitat, 
so locations occurring at opposite sides of the Gulf were merged. 
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The outer part of the Peninsula of California was excluded from 
analyses (Figure 1b).

Our coastline distance metric treats the coast of the TEP as one‐
dimensional (distance is measured around the coast, not in a direct 
line along the shortest distance); this maximizes the comparability of 
empirically observed range sizes with those simulated by our one‐
dimensional model. We excluded observations from oceanic islands 
when quantifying range sizes, again to maximize comparability with 
simulated ranges.

2.4 | Null model

We used a null model (excluding spatial autocorrelation) to test 
whether the observed range size distributions can be obtained with‐
out dispersal limitation. For this we used the data on spatial (xy) co‐
ordinates and species IDs for each dispersal guild in the TEP. Firstly, 
we stored two vectors: one with xy coordinates and other one with 
species IDs. Then we randomly permuted the position of the spe‐
cies IDs along the vector and assigned each species ID to a new xy 
coordinate. Range sizes were measured as described above for the 
empirical data and range size distributions were obtained for the six 
different dispersal guilds. We simulated 100 of these null range size 
distributions by different permutations of the species IDs.

2.5 | Spatially explicit neutral model

We used a one‐dimensional spatially explicit neutral model 
to simulate the spatial distribution of species along a linear 

coastline. This configuration best reflects the particular geo‐
graphical distribution of reefs (coral and rocky) in the TEP region: 
a long coastline with a narrow continental platform. As in the 
original neutral model (Hubbell, 2001), the habitat is saturated 
(zero‐sum dynamics), and the species identity of an individual has 
no bearing on its chances of dispersal, mortality, reproduction, 
the initiation of speciation or the completion of speciation. The 
dynamics proceed as follows: at every time step one individual, 
chosen at random according to a uniform distribution, dies and 
is replaced by a new incipient species (with a probability µ) or by 
the newborn offspring of an existing individual (with a probability 
1 − µ) (see Figure 2 for a schematic representation of the model). 
The position X of the parent of the new offspring is determined 
by a Pareto dispersal kernel, which describes long‐distance dis‐
persal well, in line with empirical dispersal distributions of reef 
fishes (Jones 2015):

where Xm is a scale parameter (the minimum dispersal distance), and 
α is a shape parameter that changes the distribution from an expo‐
nential‐like distribution (large value of α) to a fat‐tailed distribution 
(lower values of α) where many short‐distance dispersal events are 
combined with an occasional extreme long‐distance dispersal event. 
Random samples from the distribution can be calculated using the 
inverse random sampling formula for the range size T:

(1)f
�
X
�
=

⎧
⎪⎨⎪⎩

∝Xm
∝

X∝+1
,X≥Xm

0,X≤Xm

F I G U R E  1   (a) Map with “locations” every 100 km along the Tropical Eastern Pacific (TEP) coastline. For all analyses, we used a “collapsed” 
Gulf of California and excluded the outer part of the Peninsula of California. (b) Map showing number of records per location along the 
coastline [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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where U is a random variable drawn from a uniform distribution 
between 0 and 1. To separate the effects of the shape of the dis‐
tribution and the mean dispersal distance (Xmean), we rescaled the 
inverse random sampling formula for the Pareto distribution so that 
it is written in terms of the mean dispersal distance Xmean:

In contrast to the typical ecological neutral model, we assumed 
that speciation is a gradual “protracted” process rather than an in‐
stantaneous event (Etienne & Rosindell, 2012; Rosindell et al., 2010). 
When a birth event takes place, an incipient species can form with 
probability μ; the newborn is still considered conspecific to its par‐
ent, but if sufficient time passes and descendants of the newborn 
individual survive, these descendants will be considered a new good 
species. This protracted speciation model entails one extra param‐
eter τ: “protractedness”, the number of generations required for an 
incipient species to become a good species. One generation corre‐
sponds to half of a complete turnover of the community because 
generations overlap. Both speciation probability and protractedness 
influence the generation of new species; the true speciation rate is 
a function of both parameters (μ/(1 + τ)) as described by Rosindell et 
al. (2010). We simulated the spatially explicit neutral model using a 
coalescence approach (Rosindell et al., 2008), which improves simu‐
lation efficiency, while guaranteeing the metacommunity is sampled 
at dynamic equilibrium and thus eliminating the problem of deter‐
mining an appropriate “burn‐in time” for the simulations.

Our simulation model was written in C++ and all post‐simulation 
analyses were performed with R, version 3.3.1 (R Core Team, 2016).

2.6 | Model behaviour

We explored the effect of dispersal on the distribution of range 
sizes by running simulations using various dispersal kernels, which 

differ in their Xmean and α parameter values. We used a linear lat‐
tice composed of 50,000 “units”, which can be thought of as in‐
dividual organisms or larger cohorts of individuals behaving in a 
similar manner (Harfoot et al., 2014). We found that larger lattices 
produce similar results (Supporting Information Appendix S2) but 
are computationally intractable for parameter fitting exercises that 
require many successive simulation runs. As in the real world not 
all individuals are sampled, the proportion of sampled individuals 
(sampling percentage) could therefore affect the observed distri‐
bution of ranges. Sampling was performed by randomly choosing 
individuals along the linear lattice, and only sampled individuals 
were used to quantify range sizes, thus taking into account the 
effect of sampling on apparent range. Although sample areas 
along the TEP are not random, sampling in a realistic manner pro‐
duces virtually identical results to random sampling (Supporting 
Information Appendix S3). In the real world, suitable habitat is 
often not contiguous; the same is true for the TEP, where reefs 
are fragmented by long stretches of sand or other soft substrates 
(Supporting Information Appendix S4). We explored the effect 
that habitat fragmentation has on the geographical distribution 
of species, by adding into the model areas of suitable and unsuit‐
able habitat. We did so by introducing sites within the lattice that 
were designated as unsuitable habitat. This introduces barriers to 
dispersal where many such contiguous sites are located. The loca‐
tions of the unsuitable sites were based on the real distribution of 
reefs in the TEP (Supporting Information Appendix S4), scaled to 
our lattice size.

We examined the effect of dispersal (Xmean and α), speciation 
initiation rate (μ), speciation protractedness (τ) and sampling per‐
centage (s) on the distribution of species’ range sizes. As species 
age is suggested to be positively correlated to range size (Gaston, 
2003), we also explored the effect of interspecific variation in spe‐
ciation rates on the distribution of range sizes. When speciation 
rate is high, species are on average younger, which may have an 
effect on range size. In addition, we explore how the configuration 
of the habitat (fragmentation) affects the distribution of species 
ranges.

(2)T=
Xm

U1∕∝

(3)T=

∝−1

∝
Xmean

U1∕∝

F I G U R E  2  Conceptual representation of the spatially explicit neutral model algorithm 
Notes. At every time step one random individual along the lattice dies (in this case a black fish) and is replaced either by a new incipient 
species (red fish), which may become a good species if it survives for sufficiently long, or by the newborn offspring of an existing individual 
(blue fish). [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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In our default scenario, we used a lattice with contiguous habitat 
and the following parameter values: mean dispersal distance Xmean = 
2%, dispersal kernel shape α = 3.0, sampling percentage s = 100%, 
speciation probability µ = 0.0005 and protractedness τ = 10. We 
simulated five sets of alternative scenarios, in which values of either 
Xmean, α, s, µ or τ were altered as well as a scenario showing the ef‐
fects of habitat fragmentation for high and low dispersers. In partic‐
ular, we explored five different mean dispersal distances (Xmean = [2, 
5, 10, 20, 40%]) on a lattice with either a contiguous or a fragmented 
habitat, five different α‐values (α = [1.5, 2.0, 2.5, 3.0, 3.5]), five dif‐
ferent sampling percentages (s = [1, 5, 20, 50, 100% of all individuals]) 
and four different speciation probability and protractedness values 
(μ = [5 × 10−2, 5 × 10−3, 5 × 10−4, 5 × 10−5], τ = [0, 10, 100, 1000]).

We estimated the simulated range size for each species as the 
linear distance (equivalent to coastline distance in the one‐dimen‐
sional lattice) between the most distant points where the species is 
recorded. The range size was measured relative to the total lattice 
size and transformed to percentages (100% corresponding to the 
total size of the complete lattice). We replicated the simulations 100 
times and calculated mean and 95% Confidence intervals (CI) values.

2.7 | Model fitting

To estimate parameters from the artificial range size distributions, 
we used an approximate Bayesian computation approach, with 
a sequential Monte Carlo algorithm (ABC‐SMC) as described by 
Toni, Welch, Strelkowa, Ipsen, and Stumpf (2009). To assess the 
similarity between the artificial data and simulation outcomes, 
we calculated the sum of squares between the inverse cumulative 
distribution for the simulated and artificial data, based on the dif‐
ferences in both the range size distributions and species richness 
levels. Progression of the acceptance threshold was modelled as 
an exponentially decreasing function, where the threshold at it‐
eration t of the ABC‐SMC algorithm was 500e−

1

4
t. We assumed the 

following prior distributions for each parameter (on a log10 scale, 
e.g., U10(0,1) = 10

U(0,1), where U is a uniform distribution), Xmean: 
U10(−4, −0.25), α: U10(0,1), speciation initiation rate: U10(−4, 0), 
protractedness: U10(0,5) and sampling: U10(−4, 0). Per ABC‐SMC 
iteration, we used 10,000 particles. The ABC‐SMC algorithm ran 
for 20 iterations, or until the acceptance rate dropped below 1 in 
1,000,000 proposed parameter combinations. Perturbation of the 
parameters was performed on a log10 scale, to avoid parameters 
reaching a negative value. Parameters were perturbed by first tak‐
ing the log10, then adding a random number drawn from a normal 
distribution with mean zero and standard deviation 0.05, after 
which we exponentiated the parameter again. Finally, we checked 
whether the parameter values still lay within the prior ranges; if 
not, the particle was rejected. For each dataset, we performed 10 
replicate fits. Posterior parameter values were corrected using lin‐
ear regression (Beaumont, Zhang, & Balding, 2002).

To assess the impact of speciation, we performed two additional 
fits using a modified speciation model. Firstly, speciation rate was 
fixed at 1, reflecting a fixed age for all species, which is given by the 
protractedness parameter. Secondly, we used a fixed protractedness 

of zero, reflecting a model where speciation is instantaneous (point 
mutation). However, posterior fits of these models [corrected for a 
reduced number of parameters, following the Akaike’s information 
criterion (AIC; Akaike, 1974)] show that they fit the data poorly in 
comparison to the full model (Supporting Information Appendix S5), 
and they were thus not considered further.

Lastly, goodness of fit of the model to the data was estimated by 
calculating the posterior predictive p‐value, using 1,000 replicates 
in the function “gfit” in the “abc” package in R (Csilléry, François, & 
Blum, 2012).

2.8 | Model fitting validation

Prior to fitting the model to the empirical data, we assessed the 
accuracy of our inference method. For this, we generated artificial 
datasets using known parameters for Xmean, α, speciation, sampling 
and protractedness. In particular, we used Xmean = 0.001, 0.01, 0.1 
or 0.2, α = 2, 4, 6 or 8, s = 0.025 or 0.25, and two different specia‐
tion regimes: one with high speciation (μ = 0.01) and high protract‐
edness (τ = 2,500), and one with low speciation (μ = 0.001) and low 
protractedness (τ = 25). For each parameter combination, we gener‐
ated 10 artificial datasets. We then attempted to recover the known 
simulated parameters from simulated data using the ABC‐SMC ap‐
proach. In total, we performed (10 × 4 × 4 × 2 × 2) = 640 ABC‐SMC 
inferences to assess accuracy. Posterior distributions of parameter 
values generally closely matched the simulated parameter values 
(Supporting Information Appendix S6), which indicates that our fit‐
ting procedure is appropriate for estimating the parameter values of 
our neutral model. Only in the case of α (dispersal kernel shape) were 
the parameter estimates not very accurate. This was likely due to the 
low power of α in explaining range size variation.

2.9 | Theoretical richness gradients

In order to make predictions of species richness gradients along the 
TEP coastline, we first fitted our model to the empirical range size 
distribution using a habitat fragmented in the same pattern as the 
real‐world habitat (Supporting Information Appendix S4). Next, we 
used the fitted parameters for each dispersal guild to run 100 rep‐
licate simulations. Finally, we quantified species richness along the 
complete linear lattice and plotted the results alongside empirical 
richness gradients for comparison.

3  | RESULTS

3.1 | Empirical range size distributions

Pelagic spawners have a relatively high proportion of species 
with large ranges, irrespective of their adult mobility (Figure 3a). 
Specifically, more than half of the species have ranges larger than 
80% of the maximum possible range for the studied region. In con‐
trast, the range size distribution of non‐pelagic spawners strongly 
depends on the capacity of adult fishes to disperse. Within the 
non‐pelagic spawners, the lowest dispersive guild has the highest 
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number of species, the highest proportion of species with small 
ranges and the lowest proportion of species with large ranges 
(Figure 1a). While more than half of the non‐pelagic spawning spe‐
cies with medium or high adult mobility have ranges larger than 
80% of the maximum range, for species with low mobility, only a 
fifth of species have ranges larger than 80% of the maximum. This 
general pattern is even more pronounced for endemic species: a 
large majority of the pelagic spawners and non‐pelagic spawn‐
ers with medium and high adult mobility have large ranges, and 
non‐pelagic spawners with low adult mobility have an even higher 
proportion of species with small ranges (Figure 3b). In contrast, 
most of the non‐endemic species are pelagic spawners, and for 
these species, the range size distribution is bimodal (especially for 
medium mobile species): while there are a large number of species 
with small ranges, there are others displaying large ranges and a 

few showing intermediate ranges (Figure 3c). There are relatively 
few non‐endemic non‐pelagic spawning species. Those with me‐
dium or high mobility tend to have large ranges, while the majority 
of non‐pelagic non‐endemic species with small ranges have low 
adult mobility (Figure 3c).

3.2 | Empirical richness gradients

Species richness in general remains relatively constant for all guilds 
(except for non‐pelagic spawners with low adult mobility) along 
the TEP coast, decreasing in the last part of the curve (Figure 3d). 
However, some curves (e.g., pelagic spawners with low and medium 
adult mobility) show peaks at locations 2,600–3,500 and around 
location 7,000 (see Figure 1a for a map of the locations). Richness 
for non‐pelagic spawners with low adult mobility is maximum at the 

F I G U R E  3  Distribution of range sizes and richness patterns along the Tropical Eastern Pacific (TEP) coast for different dispersal guilds of 
reef fishes in the TEP Notes. A guild is defined as a group of species that share the same spawning mode (pelagic and non‐pelagic spawners) 
and adult mobility (low, medium and high). Range size is shown in relative terms, where a range of 100% is a species that covers the entire 
region. We used coastline distance as the range size metric, which is the distance between the most distant points along the coastline. 
Individuals from oceanic islands are excluded to be consistent with the one‐dimensional nature of the model. The two sides of the Gulf of 
California coastline were collapsed into a single line of habitat. The distribution of ranges for each guild is shown as a cumulative distribution 
curve, which shows the proportion of species (y axis) with a range larger than a given size (x axis). Range size distributions are shown for (a) 
all species in the TEP, (b) all TEP endemic species and (c) all TEP non‐endemic species. Richness gradients along the TEP coast are shown for 
(d) all species in the TEP, (e) all TEP endemic species and (f) all TEP non‐endemic species. [Colour figure can be viewed at wileyonlinelibrary.
com]
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first part of the curve, showing an abrupt drop at location 3,600, 
then constantly decreasing until reaching a valley between loca‐
tions 5,500 and 7,000. After this, richness increases to 80 species, 
followed by a constant decrease (Figure 3d). When examining only 
endemic species (Figure 3e), we see that all guilds except non‐pe‐
lagic and low adult mobility guilds show a constant richness, without 
richness peaks. For non‐endemic species, species richness is in gen‐
eral lower than for endemic species (Figure 3e), and non‐endemic 
pelagic spawners attain a higher richness than non‐endemic non‐pe‐
lagic spawners along the TEP coast. Pelagic spawners with high adult 
mobility have a constant richness along the coast that decreases at 
higher locations (towards the southern edge of the TEP). Non‐en‐
demic pelagic spawners with medium adult mobility, however, show 
a bimodal pattern, with one peak at locations 2,600–3,600 and 
another at 8,200–9,000. Non‐endemic pelagic spawners with low 
adult mobility show a peak at locations 6,600–7,500.

3.3 | Null model

In the absence of dispersal limitation, our null model predicts species 
to be more widespread than they are in reality. Therefore, the null 
model cannot explain the empirical range size distribution of reef 
fishes in the TEP and especially not for the less dispersive guilds. All 
dispersal guilds are predicted under the null model to have a larger 
proportion of species with large range sizes than the observed ones 
(Figure 4).

3.4 | Spatially explicit neutral model

The strongest effects on the distribution of range sizes are caused 
by variation in mean dispersal distance (Xmean), speciation rate and 
protractedness (Figure 5). Although dispersal (Xmean and α) has a 
strong effect on the shape of the range size distribution, the con‐
tributions of Xmean and α to the effect of dispersal on the range size 
distribution are not equal, with the majority of the dispersal effect 
resulting from Xmean (Figure 5a,b). As Xmean increases, the proportion 
of species with large ranges increases as well. The shape parameter 
of the dispersal kernel (α) has limited influence on the distribution of 
range sizes (Figure 5b). Speciation exerts a strong effect on the dis‐
tribution of ranges, with a higher proportion of species having a large 
range size when speciation rate is low (Figure 5c). A high speciation 
rate produces more new species, which initially have small ranges, 
and hence a decrease in the number of species with large ranges, 
and a (potentially unrealistically) high number of species in total 
(Figure 5c). The effect of protractedness is similar to that of spe‐
ciation, as they both modify the number of species and the rate at 
which these are created. The higher the protractedness, the longer 
the time before an incipient species becomes a good species, and as 
a result fewer (good) species have small ranges (Figure 5d). Habitat 
fragmentation affects the range size distribution of low dispersive 
species more strongly than of high dispersive species (Figure 5e). 
Sampling affects the distribution of ranges differently from disper‐
sal, speciation or protractedness: a lower sampling effort leads to 

more species with few individuals and thus a higher proportion of 
species with apparently small ranges (Figure 5f).

3.5 | Model fitting

The fitting procedure on the empirical range size distributions for the 
six dispersal guilds of reef fishes showed a good fit for all datasets (pos‐
terior predictive p‐value > 0.05, Supporting Information Appendix 
S7a), except for non‐pelagic low mobility and for pelagic high mobility 
(p = 0.012 and 0.027 respectively, Supporting Information Appendix 
S7a, Figure 6). However, posterior predictive testing is confounded 
here by differences in variation across simulations across datasets. 
Comparing the normalized sum of least squares (normalized for the 
total number of species in the dataset), we find that for the non‐pe‐
lagic low mobility and the pelagic high mobility guilds, the average 
normalized sum of least squares is lower than for the other datasets 
(Supporting Information Appendix S7c). This means that even though 
the model cannot exactly reproduce the empirical pattern (as sug‐
gested by the posterior predictive p‐values, Supporting Information 
Appendix S7a), the model predictions are nonetheless really close to 
the empirical pattern (indicated by the low values of the sums of least 
squares, Supporting Information Appendix S7b,c). Fitting the neutral 
model with habitat fragmentation to the empirical range size distri‐
butions produced similar results to the ones without fragmentation 
(Supporting Information Appendix S8). However, for the majority of 
dispersal guilds, the model without habitat fragmentation showed 
a better fit than the model with habitat fragmentation (Supporting 
Information Appendix S7), it yielded higher sums of least squares val‐
ues and lower posterior predictive p‐values, indicating a worse fit to 
the data (Supporting Information Appendix S7).

In line with expectations, estimated mean dispersal distances 
for each guild were largest for the guilds with the highest pro‐
portion of large ranges: pelagic spawners and high adult mobility. 
The α‐values were similar for all dispersal guilds (between 2.7 and 
4.23). Estimated sampling completeness was lowest for the guilds 
of non‐pelagic spawners with high and medium mobility (0.7 and 
0.3%, respectively), similarly low for the guild of pelagic spawners 
(3%–8%) and highest for the guild of non‐pelagic spawners with low 
adult mobility (33%). Protractedness values (time taken for an incip‐
ient species to become a good species) were lowest for non‐pelagic 
low mobility species, intermediate for pelagic spawners and high‐
est for non‐pelagic spawners with high and intermediate mobility. 
The speciation rate (per generation probability for an individual to 
become a new incipient species) was lowest for pelagic spawners 
(< 0.0001) and highest for non‐pelagic spawners (0.001–0.002). See 
Supporting Information Appendix S9 for a complete description of 
the model estimates and Figure 7 for the distribution of posteriors.

Although the posterior predictive p‐values were only above 0.05 
for two dispersal guilds (pelagic spawners with high and medium 
adult mobility), inspection of the qualitative properties of the fittings 
shows bimodal behaviour in all guilds that the neutral model could 
not fully replicate within its parameter space, for example, for pe‐
lagic spawners with medium adult mobility (Figure 6). We explain this 
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bimodality in the overall distribution as the result of combining the 
distribution of TEP endemic and non‐endemic species (Figure 1a–c).

3.6 | Theoretical richness gradients

Comparing the richness gradients predicted by the model fitted to 
the range size distribution with habitat fragmentation to the em‐
pirical richness gradients along the TEP coast, we show that our 
model supports qualitatively the basic pattern of species richness 
gradients in the TEP, especially for species appearing outside the 
first 18% of the region (Figure 8). Deviations from the empirical data 
for the first 18% of the region are likely caused by collapsing the 
two coasts of the Gulf of California in the empirical data. While this 
artefact does not have a strong effect on the range size distribu‐
tions (Supporting Information Appendix S1), it does affect richness 
patterns. Specifically, while for pelagic fishes collapsing the Gulf 
of California was of no consequence, it was important for the low 
mobility non‐pelagic spawners (and even a little for the medium 
mobility non‐pelagic spawners). Furthermore, the enclosed nature 
of the Gulf of California might isolate that area and thus promote 
speciation (which is not explicitly considered in our model). For pe‐
lagic spawners, the model predicts richness to increase rapidly until 

reaching a plateau in the centre of the distribution, followed by a 
more gradual decrease in the last part of the distribution in particular 
for low and medium adult mobility species. For non‐pelagic spawn‐
ers with medium and high adult mobility, the model predicts a similar 
pattern as for pelagic spawners with medium and low adult mobility 
(Figure 8). The model, however, predicts a very different pattern for 
species with non‐pelagic eggs and low adult mobility: three richness 
peaks corresponding to areas where reef habitat is available.

4  | DISCUSSION

Macroecologists have long sought to understand the large varia‐
tion in range sizes across species by correlating species ranges with 
other factors, such as traits, that are believed to influence range size. 
Despite the usefulness of this approach for hypothesis testing, such 
correlational studies are not able to provide a deeper understanding 
about the mechanisms behind the macroecological patterns we see 
in nature. In order to better understand the underlying mechanisms, 
we developed a model that can capture the way mechanisms act 
together to produce biodiversity patterns. Models can vary in com‐
plexity and in the predictions they provide. For instance, simple null 

F I G U R E  4  Range size distributions predicted by the null model without dispersal limitation and geographical constraints 
Notes. Coloured bands represent the model outcomes over 100 replicates [solid lines: mean; shaded area: 95% Confidence intervals (CI)]. 
Dashed lines represent the empirical data. [Colour figure can be viewed at wileyonlinelibrary.com]
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models like the mid‐domain effect model or the spreading dye model 
can provide null expectations of species richness patterns in ab‐
sence of environmental gradients and under geometric constraints 
(Colwell & Lees, 2000; Jetz & Rahbek, 2001). However, these mod‐
els are not able to provide predictions on range size distributions 
and have received criticism not only because of the use of observed 
ranges as a model input, but also because of the model assumptions 
(Zapata, Gaston, & Chown, 2003, 2005). Therefore, we created the 

simplest non‐mechanistic null model that can produce range size dis‐
tributions. Our null model shows that under a scenario without dis‐
persal limitation, species are expected to be more widely distributed 
and have larger ranges than they do in reality. This applies to all dis‐
persal guilds, even those representing excellent overall dispersers. 
Our null model is thus unable to explain the range size distribution 
patterns in the TEP, suggesting that species distributions must also 
be affected by dispersal limitation. More sophisticated mechanistic 

F I G U R E  5  Effect on range size distributions of (a) the mean dispersal distance Xmean, (b) the shape parameter of the dispersal kernel α, 
(c) speciation μ, (d) the time to speciation τ (protractedness), (e) habitat fragmentation with Xmean = 40% (top curves) and Xmean = 2% (bottom 
curves) and (f) sampling proportion s
Notes. Lines show the average value of 100 replicates and the shaded areas represent the 95% Confidence intervals (CI). For all simulations, 
we used a contiguous lattice with a size of 50,000 individuals. We use one fixed parameter setting, and varied only one variable of interest at 
a time: s = 100%, α = 3.0, Xmean = 0.02, μ = 0.0005, τ = 10. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com


     |  885ALZATE et al.

models (that include dispersal limitation) are therefore a next step to 
reproduce range size distribution patterns. The neutral model of bio‐
diversity and biogeography (Hubbell, 2001) has proven to be a useful 
mechanistic model that can produce several biodiversity patterns, 
for example, species abundance distribution, species–area relation‐
ships and beta‐diversity patterns, while at the same time remaining 
conceptually simple. Neutral models can be used as a tool to study 
biodiversity patterns (Rangel & Diniz‐Filho, 2005; Tittensor & Worm, 
2016). They have been shown to adequately reproduce fish diversity 
patterns in riverine ecosystems (Muneepeerakul et al., 2008), and 
longitudinal gradients in species richness, diversification rates and 
beta‐diversity patterns in mangroves (Descombes et al., 2018).

Our spatially explicit model provides evidence that two traits 
used as a proxy of dispersal, spawning mode and adult mobility, are 
indeed related to dispersal ability and to range sizes in tropical reef 
fishes. The importance of dispersal ability in explaining range size 
variation has often been questioned, due to mixed results of several 
correlational studies (Lester & Ruttenberg, 2005; Luiz et al., 2013; 
Ruttenberg & Lester, 2015). Our model shows that high dispersal 
rates generate distributions where many species have large ranges, 
whereas low dispersal leads to the emergence of a large proportion of 
small ranged species, consistent with a positive relationship between 

dispersal and range size. Interestingly, our model also shows that 
range size variation can be large within dispersal guilds, as dispersal 
only affects the probability of long‐distance dispersal. Thus, although 
many species with low dispersal have small ranges, there are some 
with large ranges. Similarly, high dispersive species sometimes have 
small ranges despite large ranges being the norm. These findings help 
explain why it has been challenging for empirical and correlative stud‐
ies to uncover clear links between dispersal ability and range size.

Our neutral model predicts range size distributions with a close 
fit to the empirical distributions for six different dispersal guilds of 
reef fishes in the TEP, and for each guild, estimated mean disper‐
sal distance was in line with expectations for that guild’s dispersal 
ability. These findings indicate that, despite their simplicity, neu‐
tral models still capture the most important processes for driving 
range size variation within such guilds (although of course not be‐
tween guilds with different dispersal characteristics). Within guilds 
of pelagic spawners with high and medium adult mobility, the range 
size distribution tended to be bimodal, which cannot be explained 
by neutral processes alone. We found that this bimodality primarily 
resulted from the combination of two different background distri‐
butions: TEP endemics and TEP non‐endemics, with the endemics 
generally having larger ranges within the TEP. We hypothesize that 

F I G U R E  6  Range size distributions of the best‐fitting model for each dispersal guild, shown as an inverse cumulative distribution curve 
Notes. Mean of five replicates and 95% Confidence intervals (CI) are shown. Dashed lines represent the empirical data and coloured bands 
represent the distribution of values in the best‐fitting model for that guild. Estimated Xmean (median of > 90,000 estimates) is shown for each 
dispersal guild. [Colour figure can be viewed at wileyonlinelibrary.com]
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endemics have generally had a longer time to increase their ranges 
in the region. In contrast, non‐endemics include recent immigrant 
populations and have both large and small ranges; they are often 
just at the edges of the range for a wider ranged species that mostly 
occupies areas outside the TEP. Possibly, such non‐endemic species 
migrated from temperate regions (North and South America), and 
others from tropical areas outside the TEP, so they are climatically 
constrained from expanding further in ways that cannot be captured 
by a neutral model. We conjecture that species origin has a major 
influence on range expansion via successful colonization, as a conse‐
quence of their adaptation to tropical conditions. For instance, the 
majority of non‐endemic species with large ranges are trans‐Pacific 
species, already adapted to tropical conditions. In contrast, 22 out 
of the 24 species with very small ranges come from temperate re‐
gions, and it is likely that their adaptations to a temperate climate 
made these species less able to expand their ranges into tropical re‐
gions (Holt, 2003). Species coming from the temperate north indeed 
do not go down to the south and vice versa, whereas transpacific 
species are well distributed along the coast (Supporting Information 
Appendix S10). This supports our conjecture of climatic constraints 
playing a role for the non‐endemic species.

Speciation, sampling intensity and dispersal are major determi‐
nants of range size formation in our study. When sampling effort was 
low, only a single individual was detected for many species (hence 
they were treated as singletons, even though more individuals may 
have been present but not observed), leading to a high proportion of 
species with very small ranges. The proportion of species with small 
ranges also increased when speciation rates were high, or when spe‐
ciation was a fast process (low protractedness). In these cases, new 
species emerged continuously with low abundance and restricted 
range. Empirical data also show that the lowest dispersive guild (low 
adult mobility and non‐pelagic spawners) has a lot more species than 
more dispersive guilds. The interaction between low dispersal and 
geographical isolation may facilitate speciation via reduction in gene 
flow (Riginos, Buckley, Blomberg, & Treml, 2014), and hence lead to 
higher diversity. In our model, speciation has the same effect with‐
out the inclusion of reduction of gene flow influencing speciation: 
low dispersal guilds tend to have more species than high dispersive 
guilds, and habitat fragmentation can further strengthen this pat‐
tern (Supporting Information Appendix S11).

In addition to the most obvious processes related to range 
size, our model also shows that habitat fragmentation can play 

F I G U R E  7  Posterior distribution of parameters for each guild, inferred using approximate Bayesian computation 
Notes. Shown are results for the shape of the dispersal kernel (α), mean dispersal distance (Xmean), speciation initiation rate (μ), protractedness 
(τ) and the rate of sampling (s). Whereas the pelagic guilds generally have very similar parameter distributions regardless of mobility, the non‐
pelagic guilds differ strongly, with the lowest adult mobility guild standing out. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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an important role in shaping macroecological patterns and that 
its effect depends on the dispersal abilities of the species. For in‐
stance, highly dispersive species have range size distributions that 
do not differ much between contiguous and fragmented habitats. 
Conversely, range size distributions for low dispersive species are 
strongly affected by habitat fragmentation. These species tend to 
have even smaller ranges in fragmented habitats than in contiguous 
habitats. This suggests that our model’s predictions conform to the 
intuition that range expansion for low dispersive species is nega‐
tively affected by habitat fragmentation.

By running simulations with parameters estimated from range 
size distributions (richness patterns were not fitted), our neutral 
model can predict species richness gradients in the region reason‐
ably well. Interestingly, the predicted richness gradients depend on 
dispersal and its interaction with habitat fragmentation. The pre‐
dicted species richness gradients along the TEP coast tend to have 
the typical convex shape (richness increasing towards the centre 
of the distribution gradient) for highly dispersive guilds, whereas 
for the lowest dispersive guild (low adult mobility and non‐pelagic 
spawners), the shape was quite different from the other guilds and 

looks like a more complex form with several interior peaks (Figure 8). 
In line with Macpherson, Hastings, and Robertson (2009), broadly 
distributed species (which tend to be the more dispersive) in the 
TEP are responsible for the convex shape of the latitudinal richness 
gradient, whereas narrow‐ranged species (which tend to be species 
with low adult mobility and non‐pelagic spawners) are responsible 
for departures from the typical convex shape. Narrowly distributed 
species are concentrated in two stretches of coast where there is 
more contiguous reef habitat (Gulf of California and Panama/Costa 
Rica). Exploration of our model showed that the predicted richness 
gradients for low dispersive species in a contiguous habitat will be 
a convex curve and that departures from that curve (bimodality or 
other shapes) are caused by habitat fragmentation and inability of 
those species to cross the dispersal barriers (Supporting Information 
Appendix S11).

Here, we have shown that dispersal is a crucial factor in shaping 
the range size distribution of species. The use of both a mecha‐
nistic model and detailed analyses was required to reach this con‐
clusion. Variation in range size across species can be explained by 
a combination of neutral processes and guild‐specific differences 

F I G U R E  8  Richness gradients predicted by the neutral model 
Notes. Black solid lines and grey bands show the mean and the 95% CI of 100 simulations. Simulations used as an input the estimated 
parameter values estimated by fitting the model with fragmentation to the range size distribution of reef fishes (Supporting Information 
Appendix S8). Coloured curves show the empirical richness gradient along the TEP coast, the shaded areas highlight the range locations 
affected by collapsing the Gulf of California (see methods), which unrealistically increases local species richness on those localities. Locations 
along the coastline are transformed to relative number. [Colour figure can be viewed at wileyonlinelibrary.com]
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in dispersal. Consistent with previous studies on neutral models 
with guild structure (using predictions for abundance instead of 
range size, Aduse‐Poku et al., 2018; Janzen, Haegeman, & Etienne, 
2015), our results show that while community dynamics within 
guilds may be captured by a neutral model, across guilds niche‐
based processes drive variation in range size. Neutral theory was 
originally proposed to describe community assembly within guilds 
(Hubbell, 2001). Our results are consistent with this philosophy but 
take the concept further by fitting both a single neutral model and 
a set of independent neutral guilds to empirical data (Supporting 
Information Appendix S12, Figure 6). Our results show that across 
guilds, niche‐based processes, in this case differing dispersal strat‐
egies, play a larger role in driving ecological patterns, while within 
guilds they are much less important. The neutral models we used 
were originally developed to understand macroecological pat‐
terns such as species abundances and species–area relationships 
(Hubbell, 2001). Neutral models can thus be regarded as a generic 
mechanistic tool, which we apply here to new patterns, rather than 
a phenomenological construct tailored to range sizes alone. Our 
findings thereby make substantial progress towards settling the 
long‐standing question of what causes variation in range size, and 
of the role of dispersal in this pattern.
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