English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Proteomics and C9orf72 neuropathology identify ribosomes as poly-GR/PR interactors driving toxicity

MPS-Authors
/persons/resource/persons135434

Hornburg,  Daniel
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons230739

Bader,  Jakob
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78356

Mann,  Matthias
Mann, Matthias / Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78384

Meissner,  Felix
Meissner, Felix / Experimental Systems Immunology, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource

https://doi.org/10.26508/lsa.201800054
(Supplementary material)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

e201800070.full.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Hartmann, H., Hornburg, D., Czuppa, M., Bader, J., Michaelsen, M., Farny, D., et al. (2018). Proteomics and C9orf72 neuropathology identify ribosomes as poly-GR/PR interactors driving toxicity. Life Science Alliance, 1(2): e201800070. doi:10.26508/lsa.201800070.


Cite as: https://hdl.handle.net/21.11116/0000-0003-153E-1
Abstract
Frontotemporal dementia and amyotrophic lateral sclerosis patients with C9orf72 mutation show cytoplasmic poly-GR and poly-PR aggregates. Short poly-(Gly-Arg) and poly-(Pro-Arg) (poly-GR/PR) repeats localizing to the nucleolus are toxic in various model systems, but no interactors have been validated in patients. Here, the neuronal interactomes of cytoplasmic GFP-(GR)149 and nucleolar (PR)175-GFP revealed overlapping RNA-binding proteins, including components of stress granules, nucleoli, and ribosomes. Overexpressing the poly-GR/PR interactors STAU1/2 and YBX1 caused cytoplasmic aggregation of poly-GR/PR in large stress granule–like structures, whereas NPM1 recruited poly-GR into the nucleolus. Poly-PR expression reduced ribosome levels and translation consistent with reduction of synaptic proteins detected by proteomics. Surprisingly, truncated GFP-(GR)53, but not GFP-(GR)149, localized to the nucleolus and reduced ribosome levels and translation similar to poly-PR, suggesting that impaired ribosome biogenesis may be driving the acute toxicity observed in vitro. In patients, only ribosomes and STAU2 co-aggregated with poly-GR/PR. Partial sequestration of ribosomes may chronically impair protein synthesis even in the absence of nucleolar localization and contribute to pathogenesis.