Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Generation of Lagrangian intermittency in turbulence by a self-similar mechanism

MPG-Autoren
/persons/resource/persons192996

Wilczek,  Michael
Max Planck Research Group Theory of Turbulent Flows, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173713

Xu,  Haitao
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173609

Ouellette,  Nicholas T.
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173472

Bodenschatz,  Eberhard
Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wilczek, M., Xu, H., Ouellette, N. T., Friedrich, R., & Bodenschatz, E. (2013). Generation of Lagrangian intermittency in turbulence by a self-similar mechanism. New Journal of Physics, 15, 055015-1-055015-12. doi:10.1088/1367-2630/15/5/055015.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-0FE1-7
Zusammenfassung
Intermittency, i.e., extreme fluctuations at small scales, causes the deviation of turbulence statistics from Kolmogorov's 1941 theoretical predictions. Intermittency effects are especially strong for Lagrangian statistics. Our understanding of how Lagrangian intermittency manifests, however, is still elusive. Here, we study the Lagrangian intermittency in the framework of an exact, yet unclosed probability density function (PDF) equation. Combining this theoretical approach with data from experiments and simulations, no a priori phenomenological assumptions about the structure or properties of the flow have to be made. In this description, the non-self-similar evolution of the velocity increment PDF is determined at all scales by a single function, which is accessible through data from experiments and simulations. This 'intermittency generating function' arises from the dependence of the acceleration of a fluid element on its velocity history, thereby coupling different scales of turbulent motion. Empirically, we find that the intermittency generating function has a simple, approximately self-similar form, which has the surprising implication that Lagrangian intermittency—the absence of self-similarity in the Lagrangian velocity increment statistics—is driven by a self-similar mechanism. The simple form of the intermittency generating function furthermore allows us to formulate a simple model parametrization of the velocity increment PDFs.