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There is a growing effort in creating chiral transport of sound
waves. However, most approaches so far have been confined to
the macroscopic scale. Here, we propose an approach suitable to
the nanoscale that is based on pseudomagnetic fields. These pseu-
domagnetic fields for sound waves are the analogue of what elec-
trons experience in strained graphene. In our proposal, they are
created by simple geometrical modifications of an existing and
experimentally proven phononic crystal design, the snowflake
crystal. This platform is robust, scalable, and well-suited for a vari-
ety of excitation and readout mechanisms, among them optome-
chanical approaches.

nanomechanics | pseudomagnetic field | topological physics |
optomechanics | phononic crystal

Unlike electrons, phonons do not feel a magnetic field, be-
cause they are not charged. As a consequence, much of the

interesting physics connected to the behavior of charged parti-
cles in a magnetic field is absent for phonons, be it the Lorentz
force or the unidirectional transport along the edges of the sam-
ple. In the past two years, researchers have started to study how
one might make sound waves behave in ways similar to electrons
in a magnetic field or related topological settings. This research
promises to pave the way toward transport along edge chan-
nels that are either purely unidirectional (1) or helical (2) (i.e.,
with two “spins” moving in opposite directions), as well as the
design of novel zero-frequency boundary modes (3, 4). The first
few experimental realizations (1, 2, 4–8) and a number of the-
oretical proposals (3, 9–18) involve macroscopic setups. These
include coupled spring systems (1, 2, 11–13, 19) and circulating
fluids (9, 10, 16, 20); for a review see ref. 21. These designs repre-
sent important proof-of-principle demonstrations of topological
acoustics and could open the door to useful applications at the
macroscopic scale. However, they are not easily transferred to
the nanoscale, which would be even more important for poten-
tial applications. First concepts for Chern insulators or topolog-
ical insulators at the nanoscale are challenging and have not yet
been implemented, because they require either strong laser driv-
ing (22) or designs that are hard to fabricate (23).

Fruitful inspiration for an entirely different avenue toward
nonreciprocal transport can be found in the physics of electrons
propagating on the curved surface of carbon nanotubes (24) and
in strained graphene (25–28). It has been discovered that these
electrons experience so-called pseudomagnetic fields, whose dis-
tribution depends on the strain pattern. Pseudomagnetic fields
mimic real magnetic fields but have opposite sign in the two
valleys of the graphene band structure and, thus, do not break
time-reversal symmetry. This results in helical transport, with two
counterpropagating species of excitations. In the past, this con-
cept has already been successfully transferred to engineered car-
bon monoxide molecular graphene (29) and a photonic waveg-
uide system (30). The idea of pseudomagnetic fields generated by
distortions is so powerful because it can be implemented entirely
using a purely geometrical approach, without any external driv-
ing, which is a crucial advantage at the nanoscale.

In this paper, we show how to engineer pseudomagnetic fields
for sound waves at the nanoscale. In addition, it turns out that

our design will be realizable in a platform that has already been
fabricated and reliably operated in experiments, the snowflake
phononic crystal (31). That platform has the added benefit of being
a well-studied optomechanical system, which, as we will show, can
also provide powerful means of excitation and readout. Besides
presenting our nanoscale design we also put forward a general
approach to pseudomagnetic fields for Dirac quasiparticles based
on the smooth breaking of the appropriate point group (the C6
or the C3v groups) and translational symmetries. Our scheme is
especially well-suited to patterned engineered materials such as
phononic and photonic crystals. It ties into the general efforts of
steering sound in acoustic metamaterials at all scales (32–35).

Results
Dirac Equation and Gauge Fields. The 2D Dirac Hamiltonian in the
presence of a gauge field A(x) reads (we set the Planck constant
and the charge equal to one) (36)

ĤD = mσ̂z + v(px −Ax (x))σ̂x + v(py −Ay(x))σ̂y . [1]

Here, m is the mass, v is the Dirac velocity, and σ̂x ,y,z are the
Pauli matrices. For zero mass and a constant gauge field (m = 0
and A(x) = A), the band structure forms a Dirac (double) cone,
where the top and bottom cones touch at the momentum p = A.

In a condensed matter setting, the Dirac Hamiltonian de-
scribes the dynamics of a particle in a honeycomb lattice, or
certain other periodic potentials, within a quasimomentum val-
ley (i.e., within the vicinity of a lattice high-symmetry point in
the Brillouin zone). In this context, p is the quasi-momentum
counted off from the relevant high-symmetry point. Here, we are
interested in a scenario where the Dirac Hamiltonian Eq. 1 is
defined in two different valleys mapped into each other via the
time-reversal symmetry operator T . This scenario is realized in
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graphene, where the Dirac equation is defined in the two valleys
around the symmetry points K and K′. For charged particles, the
gauge field A(x) usually describes a real magnetic field B, where
B =∇× A. In this case, the time-reversal symmetry T is broken.
For m = 0 and a constant magnetic field, the Dirac cones break
up in a series of flat Landau levels (36),

En = sign(n)
√
|n|ωc , ωc = v

√
2B , [2]

where n ∈Z and ωc is the cyclotron frequency. The presence of a
physical edge then leads to topologically protected gapless edge
states in each valley. For a real magnetic field, the edge states in
the two valleys have the same chirality. However, here, we will
be interested in the case of engineered pseudomagnetic fields,
where the gauge field A(x) does not break the T -symmetry. In
this case, B =∇×A must have opposite sign in the two differ-
ent valleys to preserve the T -symmetry. It is clear that as long
as one can focus on a single valley, the nature of the magnetic
field (real or pseudo magnetic field) does not play any role. This
holds true also in the presence of boundaries. For a given val-
ley and gauge potential A, exactly the same edge excitations will
emerge in the presence of a pseudo or a real magnetic field.
The nature of the magnetic field only becomes apparent when
the eigenstates belonging to inequivalent valleys are compared.
When time-reversal is preserved (pseudomagnetic field), each
edge state in one valley has a time-reversed partner with oppo-
site velocity in the other valley. Thus, the edge states induced by
a pseudomagnetic field are not chiral but rather helical.

Dirac Phonons in the Snowflake Phononic Crystal. Finite element
method (FEM) mechanical simulations of a silicon thin-film
snowflake crystal are presented in Fig. 1. Throughout this paper,
we restrict our attention to the modes that are even under the
mirror symmetry (x , y , z )→ (x , y , −z ), that is, the z -symmetric
modes (SI Appendix). The mechanical band structure is shown in
Fig. 1C. It features a large number of Dirac cones at the high-
symmetry point K. Each cone has a time-reversed partner at
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Fig. 1. Snowflake crystal: geometry, band structure, and displacement fields. (A) Image of a silicon snowflake phononic crystal. It is formed by upward and
downward triangles connected by links. The links form a Kagome lattice whose Bravais sublattices are marked by circles of different colors. (B) Top view of the
field |ψms,τ (x,z)|2 (time-averaged square displacement) for one normal mode at the Dirac point (ms =−1 and valley τ =−1). The dashed line indicates the
border of the Wigner–Seitz cell. The relevant geometric parameters are indicated. (C) Phononic band structure (z-symmetric modes) for three values of the
snowflake radius r, in silicon. For r = 180 nm, a group of three bands (plotted in red) is separated by complete band gaps from the remaining bands. The triplet
can be fitted well by a Kagome lattice model and exhibits Dirac cones at the high symmetry points K and K′ (only K is shown). At the cone tip, the degenerate
normal modes have quasi-angular momentum ms = ±1. (D–F) Snapshots of the mechanical displacement field (absolute value encoded in the color scale) for
the mode with quasi-angular momentum ms =−1 and valley τ =−1, within a Wigner–Seitz cell. Subsequent snapshots are taken after one-third of a period
(cf. the clocks). Each snapshot is the anticlockwise rotation by a 2π/3 angle around the snowflake center of the previous snapshot (cf. the arrows). Movie S1
shows this dynamics in more detail. All band structures and normal mode profiles are computed using a finite-element solver (COMSOL). The simulated slab
thickness is 220 nm. The snowflake spacing a and the width w (see B) are (a, w) = (500, 75) nm. In B, D, E, and F the snowflake radius is r = 180 nm.

the point K′ (not shown). These pairs of Dirac cones are robust
structures: When the radius of the snowflake is varied, they are
shifted in energy (and can possibly cross other bands) but the
top and bottom cones always touch at the corresponding high-
symmetry point (Fig. 1C). In other words, the mass m and the
gauge field A are always zero in the corresponding Dirac Hamil-
tonian. To generate the desired gauge field, it is necessary to
modify the pattern of holes in a way that breaks the symmetries
of the crystal (see below).

In preparation of this, we use the snowflake radius as a knob
to engineer a pair of Dirac cones that are spectrally well-isolated
from other bands and have a large velocity. The snowflake crystal
can be viewed as being formed by an array of triangular mem-
branes arranged on a honeycomb lattice and connected through
links (Fig. 1B). In principle, we could choose a situation where
the links are narrow (large snowflake radius r), such that all
of the groups of bands are spectrally well-isolated. However,
then the Dirac velocities tend to be small. For wider links
(smaller r), the motion of the adjacent edges of neighboring tri-
angular membranes becomes strongly coupled. This gives rise
to normal modes where such adjacent sides oscillate in phase,
resulting in large displacements of the links. We note that these
links are arranged on a Kagome lattice (Fig. 1A). This observa-
tion explains the emergence (see r = 180 nm plot of Fig. 1E) of
a group of three bands, separated from the remaining bands by
complete band gaps, and supporting large-velocity Dirac cones.
The triplet of isolated bands can be fitted well by a Kagome lat-
tice tight-binding model with nearest-neighbor and next-nearest-
neighbor hopping. The Kagome lattice model would be entirely
sufficient to guide us in the engineering of the desired gauge
fields. However, we prefer to pursue a more fundamental and
general approach based on the symmetries of the underlying
snowflake crystal.

Identifying the Dirac Pseudospin by the Symmetries. The snowflake
thin-film slab crystal hasD6h point group symmetry. If we restrict
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our attention to the z -symmetric modes, the remaining point
group is C6v (sixfold rotations about the snowflake center and
mirror symmetries about the vertical planes containing a lattice
basis vector). The degeneracies underpinning the Kagome Dirac
cones as well as the other robust cones in Fig. 1B are usually
referred to as essential degeneracies. They are preserved if the
point group includes at least the C6 symmetries (sixfold rota-
tional symmetry about the snowflake center) or the C3v sym-
metries (threefold rotations and mirror symmetries about three
vertical planes containing a lattice unit vector). The point group
here contains both groups but, for concreteness, our explanation
will focus on the C6 symmetry. It is useful to think of the C6 sym-
metry as a combination of a C3 (threefold) symmetry group and a
C2 (twofold) symmetry group. The threefold rotations C3 belong
to the group of the high-symmetry points K and K′ (they leave
each of these points invariant modulo a reciprocal lattice vec-
tor). As a consequence, at these points, the eigenmodes can be
chosen to be eigenvectors of the C3 rotations with quasi-angular
momentum ms = 0,± 1. The essential degeneracies come about
because the eigenvectors with nonzero quasi-angular momentum
ms come in quadruplets (a degenerate pair in each inequivalent
valley), mapped into each other via the time-reversal symmetry
operator T and the rotation R̂(π)z by 180o about the snowflake
center (the sole nontrivial element of the C2 group). If we denote
the members of a quadruplet by ψms , τ (x, z ), where ms = ± 1
and τ = ± 1 indicates the valley and z is the vertical coordinate,
we have

ψms,τ
= T ψ−ms,−τ = R̂(π)zψms,−τ = T R̂(π)zψ−ms,τ

.

Note that both T and R(π) change the sign of the quasimomen-
tum and, thus, of τ . However, only T changes the sign of the
quasi-angular momentum.

The Dirac Hamiltonian [1] for a given valley τ is obtained by
projecting the underlying elasticity equations onto a 2D Hilbert
space spanned by the normal modes

ψp,ms,τ
(x, z ) = e ip·xψms,τ

(x, z ), [3]

and by identifying −ms = ± 1 with the eigenvalues of the σ̂z

matrix (SI Appendix). In other words, the quasi-angular momen-
tum ms plays the role of the Dirac pseudospin. A mass term is
forbidden because states with equal quasi-momentum and oppo-
site quasi-angular momentum are mapped into each other by
the symmetry T R̂(π)z ,ψp,ms ,τ

(x, z ) = T R̂(π)zψp,−ms ,τ
(x, z ). A

gauge field A is also forbidden because it would couple states with
different quasi-angular momentum at the symmetry point.

In our phononic Dirac system, the eigenstates ψms ,τ
(x, z ) are

3D complex vector fields. They yield the displacement fields

ums,τ (x, z , φ) = Re[exp(−iφ)ψms,τ
(x, z )], [4]

where φ is the phase of the oscillation. In this classical setting,
|ψms,τ

(x,z )|2 can be interpreted as the square displacement aver-
aged over one period, |ψms ,τ

(x, z )|2 =π−1
∫ 2π

0
dφ|ums ,τ (x, z , φ)|2.

We note that the field |ψms ,τ
(x, z )|2 is invariant under threefold

rotations about three inequivalent rotocenters: the center of the
snowflake and the centers of the downward and upwards trian-
gles (Fig. 1B). Three snapshots of the instantaneous displacement
field for the state with ms =−1 and τ =−1 are shown in Fig. 1
D–F. By definition of a quasi-angular momentum eigenstate with
ms =−1, when the phase φ varies by 2π/3 (after one-third of a
period), the instantaneous displacement field is simply rotated
clockwise by the same angle. When the valley is known, the quasi-
angular momentum (which here plays the role of the pseudospin)
can be directly read off from a single snapshot based on the posi-
tion of the nodal lines. For msτ = 1 (msτ =−1), they are located
at the center of the downward (upward) triangles (Fig. 1 B and
D–F). (For a detailed explanation see SI Appendix.) Below, we
will take advantage of our insight into the symmetries of the pseu-

dospin eigenstates to engineer a local force field which selectively
excites unidirectional waves.

Pseudomagnetic Fields and Symmetry Breaking. A crucial step
toward the engineering of a pseudomagnetic field is the imple-
mentation of a spatially constant vector potential A in a trans-
lationally invariant system. Afterward arbitrary magnetic field
distributions can be generated straightforwardly by breaking the
translational invariance smoothly.

A perturbation that breaks the C3 symmetry but preserves the
C2 symmetry will simply shift the Dirac cones, without open-
ing a gap (Fig. 2C). This can be identified with the appearance
of a constant gauge field A in the Dirac Hamiltonian [1]. As
such, the connection between changes in the microscopic struc-
ture of the phononic metamaterial and the resulting gauge field
can be obtained from FEM simulations by extracting the quasi-
momentum shift of the Dirac cones. We emphasize that, in this
context, A has the dimension of an inverse length.

In the snowflake phononic crystal, we can achieve the desired
type of symmetry breaking (breaking C3 while preserving C2)
by designing asymmetric snowflakes formed by arms of differ-
ent lengths, r1, r2, r3 (Fig. 2A). If only one of the arms is
changed, symmetry requires that the vector potential A point
along that arm, as shown in Fig. 2D. For the Dirac cones asso-
ciated with the Kagome lattice, our FEM simulations show that
the cone displacement grows linearly with the length changes, as
long as these remain much smaller than the average arm length
r = (r1 + r2 + r3)/3. In this linear regime, and for a general com-
bination of arm lengths, r1, r2, r3, we have

A ≈ τ f (r)d, d = (r1e1 + r2e2 + r3e3). [5]

The unit vectors ej point into the direction of the corresponding
snowflake arms, ej = cos θj ex +sin θj ey , where θj = 2π(j −1)/3.
The factor τ = ± 1 appears because we have not broken the
time-reversal symmetry and, thus, the vector potential has oppo-
site sign in the two valleys. We note that in general changes of the
arm lengths also shift the frequency of the Dirac point. When the
arm lengths are chosen to be position-dependent, as is required

A

B D

C

Fig. 2. Snowflake geometry and Dirac cones. (A) Geometry of the
snowflake unit cell, depicting a situation with a broken threefold rotational
symmetry C3 but preserved twofold rotational symmetry C2. (B) Geome-
try where both C3 and C2 symmetries are broken (a snowflake arm is dis-
placed vertically by ∆). (C) Resulting shape of the Dirac cones. Breaking
C3, while time-reversal symmetry T and C2 are maintained, leads to gap-
less cones displaced from the high-symmetry points. When also the C2 sym-
metry is broken, a band gap (mass) separating the upper and lower cones
appears. (D) Displacement of the Dirac cone for the valley τ =−1, for the
geometry in A when r1 is varied from 160 nm to 200 nm, while r2 = r3 and
r = (r1 + r2 + r3)/3 = 180 nm. The remaining parameters are as in Fig. 1.
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for implementing arbitrary magnetic fields, this energy shift will
enter the Dirac equation as a scalar potential V (x), which may be
unwanted. However, our numerical simulations show that we can
keep V (x) approximately constant, by retaining a constant aver-
age arm length r . Any smooth deviations from that are harmless
as long as the resulting potential shifts remain much smaller than
the typical gap between Landau levels, set by the cyclotron fre-
quency ωc , which is easily feasible. Nonsmooth disorder caused
by fabrication imperfections requires a separate treatment (dis-
cussed below).

Phononic Landau Levels and Edge States in a Strip. We can test
these concepts by implementing a constant phononic pseudo-
magnetic field in an infinite snowflake crystal strip, where we can
directly test our simplified description against full microscopic
simulations. The strip is of finite width W in the y-direction
(where −W /2< y <W /2). We can realize the corresponding
vector potential in the Landau gauge, A(x) = (−Bzy , 0, 0), by
varying the length r1 along the x axis, while keeping the remain-
ing arm lengths equal, r2 = r3. For concreteness we choose
Bz > 0 for τ =−1.

The treatment of the boundaries merits special consideration.
We recall that particles in pseudomagnetic fields are guaran-
teed to emulate their topologically protected counterparts (i.e.,
charged particles in real magnetic fields) only when the system
parameters are varied smoothly such that no intervalley cou-
pling is introduced. Clearly, sharp boundaries can lead to such
undesired coupling. Indeed, it has been shown for graphene, in
the case of real magnetic fields, that the edge states localized
close to sharp armchair boundaries are not valley-polarized (37).
Such valley mixing would arise also in the present system if sharp
boundaries are chosen. Here, we address this challenge by engi-
neering smooth boundaries. A notable advantage of our platform
is that this task is completely straightforward. Any smooth gradi-
ent of snowflake parameters near the boundaries of the sample
will lead to well-defined edge states that are spatially separated
from the physical system boundary. In general, this could involve
both a potential gradient as well as a gradient in the effective
mass (gap). In our simulations, we will display results obtained
for a smooth mass gradient, whose details do not matter for the
qualitative behavior. This gives rise to magnetic edge states that
can be easily addressed, because they have only negligible spatial
overlap with their nonmagnetic counterparts. A Dirac mass term
appears upon breaking the C2 symmetry, which we here choose
to do by transversally displacing one of the snowflake arms, as
shown in Fig. 2B, with the displacement varying smoothly in the
interval Wbulk/2 <|y | <W /2.

By changing the snowflake arm lengths we can displace the
Dirac cones only over a finite range of quasi-momenta. In our
simulations δAmax≈ 0.17π/a , as shown in Fig. 2D. Using Eq.
2 and the definition of the magnetic length `B =B−1/2, we see
that there is a trade-off between the cyclotron frequency ωc and,
thus, the achievable magnetic band gaps and the system size
in the appropriate magnetic units: ωc ≤

√
2vδAmax/w , where

w =W /`B . For our FEM simulations we have chosen w = 6.2.
In Fig. 3 we display the phonon band structure and the phonon

wave functions (mechanical displacement fields) extracted from
finite-element numerical simulations as a function of the quasi-
momentum kx along the translationally invariant (infinite) direc-
tion. We display only positive kx because, due to time-reversal
symmetry, both the frequencies and the displacement fields are
even functions of kx . In the bulk, we expect to reproduce the well-
known physics of Dirac materials in a constant (pseudo) magnetic
field (36). Indeed, the numerically extracted band structure con-
sists of a series of flat Landau levels at energies of precisely the
predicted formω= Ē+En (En is defined in Eq. 2; see Fig. 3 A and
B). The Landau plateaus extend over a quasi-momentum inter-

A B

C D

E

Fig. 3. Band structure and displacement fields of a strip in a constant
pseudomagnetic field. (A) Band structure (only the z-symmetric modes are
shown) and (B) zoom-in of the valley τ =−1. The band structure displays
multiple flat Landau plateaus in the vicinity of the K’-point (kxa = 2π/3).
In B, the dashed lines indicate the energies of the Landau levels as calcu-
lated from the Dirac equation for mass m = 0 (cf. Eq. 2). In A and B, the
dotted-dashed bands correspond to intrinsic nonchiral edge states located
at the physical boundary of the system (SI Appendix). (C) Mode shape of the
0-th Landau level and the ensuing edge states (marked in red in A and B)
as a function of the quasi-momentum kx . The region of the smooth bound-
aries (where m 6= 0) is marked in gray and the magnetic length `B in white.
(D) Zoom-in of the displacement field of the n = 0 Landau level. At the lat-
tice scale, the displacement field pattern encodes the pseudospin ms =−1
of the Landau level (cf. Fig. 1B). (E) Zoom-in of the edge state displacement
field. The profile of the arm lengths ri and of the displacement ∆ are shown
in SI Appendix, Fig. S3. The other parameters are the same as in Fig. 1.

val of width δkx ≈ δAbulk =WbulkB . Furthermore, in the bulk,
we expect the mechanical eigenstates to be localized states of
size `B =B−1/2 (in the y-direction). Their quasi-momentum kx
should be related to the position via ȳ =−[kx − 2π/(3a)]/Bz .
This behavior is clearly visible in Fig. 3C, where we show the dis-
placement field of the central Landau level. A zoom-in of this
field (Fig. 3D) reveals that, at the lattice scale, it displays the
same intensity pattern as the bulk pseudospin eigenstatems =−1
shown previously in Fig. 1F. This behavior is also predicted by
the effective Dirac description where the central Landau level is
indeed a pseudospin eigenstate with ms =−1 when the magnetic
field Bz is positive (36). Note that the pseudomagnetic field engi-
neered here also gives rise to a Lorentz force that will curve the
trajectory of phonon wavepackets traveling in the bulk of the sam-
ple. The sign of the force is determined by the valley index τ .

Having demonstrated that we can implement a constant
phononic pseudomagnetic field in the bulk, we now discuss the
resulting physics at the boundary. Each Landau level gives rise
to an edge state in the region of the smooth boundaries. The
typical behavior of the wavefunction is shown (for n = 0) in Fig.
3C. For increasing quasi-momenta kx , an edge state localized
on the upper boundary smoothly evolves into a bulk state, and
eventually into an edge state localized on the lower boundary. In
this way, at any given energy, edge states always appear pairwise
(at the upper and lower boundary), as is clear from Fig. 3 A and
B. Although this may seem trivial, it is by no means what happens
if we were to consider sharp boundaries. In fact, both for our sys-
tem as well as for graphene in a pseudomagnetic field (28), sharp
boundaries lead to a peculiar feature. In these cases, for zig-zag
edges, there is a different number of edge states on the oppo-
site sides of a strip. The two edges of the strip are not on equal
footing because a pseudomagnetic field changes sign under a
π-rotation. As a result, there is no uninterrupted edge state
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around the sharp boundary of a finite-size sample (SI Appendix).
This localization is induced by the intervalley coupling at the
sharp edges and can be prevented by using smooth boundaries,
leading to the robust behavior displayed in Fig. 3.

A characteristic feature of the band structure of a finite system
with smooth boundaries in a pseudomagnetic field is that there
is a band gap without edge states immediately below or above
the n = 0 Landau level (cf. Fig. 3 A and B). In our approach,
the qualitative behavior of the edge states originating from the
n = 0 Landau level can be controlled by changing the sign of the
mass. A negative mass (as in our simulations) drags this Landau
level into the band gap below. Vice versa, a positive mass will
drag it into the band gap above. This behavior is related to the
peculiarity of the Landau level’s being a pseudospin eigenstate
(with ms =−1) and, thus, an eigenstate of the mass term (with
eigenvalue m) (cf. Eq. 1).

Transport in a Finite Geometry and Disorder. Any pseudomagnetic
field that is realized without explicit time-reversal symmetry
breaking necessarily gives rise to helical transport, where the chi-
rality depends on some artificial spin degree of freedom (i.e., the
valley). A central question in this regard is the robustness against
short-range disorder. To assess this, we have studied numerically
transport in a finite geometry. As presented in Fig. 4, we con-
sider a sample of hexagonal shape with smooth boundaries in
the presence of a constant pseudomagnetic field (we choose the
symmetric gauge for the vector potential A). In this illustrative
example, a local probe drive excites vibrations near the bound-
aries, as indicated in Fig. 4A. Its frequency is chosen to lie inside
the bulk band gap separating the n = 0 and n =−1 Landau lev-

A

B

C

Fig. 4. Tight-binding transport simulations in a finite geometry: The
hexagon (height, 55 unit cells) comprises an internal bulk area (height,
45 unit cells) and external smooth boundaries. An engineered oscillating
force (at the position indicated by the gray arrow) with frequency in the
middle of a band gap (separating the Landau levels n =−1 and n = 0)
launches clockwise propagating sound waves. (A) Resulting displacement
field (unit-cell resolved). (B and C, Inset) Displacement field in the presence
of disorder and drains where the excitation is absorbed. (C) Probability P
(averaged over 150 disorder implementations) that an excitation is absorbed
in the left drain as a function of the disorder strength. The estimated error is
represented by error bars. The shaded area represents the values of P within
one SD. In the tight-binding model, the random onsite energies are equally
distributed on an interval of width ∆Ω. For weak disorder (∆Ω/J . 70%,
where J is the average hopping rate), P can be fitted well by a parabola
(dashed line), indicating that the transport is quasi-ballistic. In this regime,
the corresponding scattering length ` is shown in the right vertical axis.

els. In this band gap, the system supports a pair of counterpropa-
gating helical edge states belonging to opposite valleys. One can
select a propagation direction by engineering the driving force.
In a simple setting, one could apply a time-dependent force that
is engineered to excite only the pseudospin eigenstate ms = 1 in
the valley τ = 1. This can be achieved by exerting forces at the
three corners of a Wigner–Seitz cell, where the eigenstate dis-
plays a large vertical displacement (Fig. 1 B–D). There is a phase
delay of 2π/3 between any two corners, whereas a similar pat-
tern of phase delays (but with opposite signs) occurs in the other
valley. Thus, a force that is modulated with the right phase delays
will selectively drive the valley τ = 1 and excite only excitations
with a particular chirality.

It turns out to be most efficient (and entirely sufficient)
to implement the numerical simulations for these rather large
finite-size geometries with the help of a tight-binding model on a
Kagome lattice (SI Appendix). The parameters of that model can
be matched to full FEM simulations that have been performed
for the translationally invariant case. This allows us to systemat-
ically study the effects of disorder. In the presence of moderate
levels of smooth disorder, which does not couple the two val-
leys, the nature of the underlying magnetic field (pseudo vs. real)
will not manifest itself and the transport will largely be immune
to backscattering. Here, we focus instead on lattice-scale disor-
der that can lead to scattering with large momentum transfer
that couples the two valleys and thereby leads to backscattering.
We emphasize that short-range disorder will, in practice, intro-
duce backscattering in any purely geometric approach to acoustic
helical transport. In particular, this also includes acoustic topo-
logical insulators, where generic disorder will break the unitary
symmetry that ultimately protects the transport (38). To quan-
tify the effect of lattice scale disorder, we consider a setup with
two drains, one to the clockwise and one to the counterclockwise
direction, as shown in Fig. 4B. In the absence of disorder, the
vibrations travel clockwise (in this example) and are absorbed
in the right drain; only very weak residual backscattering occurs
at the sharp hexagon corners. In the presence of lattice-scale
disorder, a portion of the excitations will be backscattered and
subsequently reach the left drain. In Fig. 4C we plot the por-
tion P of excitations absorbed in the left drain, averaged over a
large number of disorder implementations, as a function of the
disorder strength. In the regime of quasi-ballistic transport (for
weak enough disorder), P is proportional to the backscattering
rate. Thus, it scales as the square of the disorder amplitude and
can be used to extract the scattering length `: P = d/`, where d
is the distance between source and drain. In current nanoscale
snowflake crystal experiments (31), the fabrication-induced geo-
metric disorder is on the order of 1% of the absolute mechani-
cal frequency Ē which corresponds to 25% of the average hop-
ping rate in the tight-binding model. In that case, our simulations
indicate the resulting scattering lengths ` to be very large (of the
order of more than 1,000 snowflake unit cells).

Discussion
We emphasize once more that one of the great practical advan-
tages of the pseudomagnetic-field-based design put forward here
is that it relies entirely on a simple geometry. Because time-
reversal symmetry is not broken, there is no need for driving. This
is in contrast to the first proposal for engineered chiral sound
wave transport at the nanoscale (22), where a patterned slab illu-
minated by a laser realizes a Chern insulator for sound. The laser
drive in ref. 22 breaks the time-reversal symmetry, enabling uni-
directional topologically protected transport, but it also requires
a suitable engineering of the wavefront and rather strong inten-
sities. The other existing proposal for topologically protected
sound transport in a 2D nanoscale lattice can do without driv-
ing, because it is based instead on a topological insulator (23).
However, it involves a geometry that seems to be hard to fab-
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ricate, in contrast to the design described here, which is based
on an experimentally proven simple structure. In addition, of
course, a major difference between the topological insulator and
our pseudomagnetic field approach is that the present design
offers access to the entire physics of the quantum Hall effect,
such as spatially inhomogeneous magnetic field distributions or
flat bulk Landau levels. The latter may become particularly inter-
esting for situations with interactions between the excitations.

Because our design is scale-invariant, a variety of different
implementations can be easily envisioned. At the nanoscale,
the fabrication of thin-film silicon snowflake crystals and reso-
nant cavities has already been demonstrated with optical read-
out and actuation (31). At the macroscale, the desired geom-
etry could be realized using 3D laser printing and similar
techniques. A remaining significant challenge relates to the selec-
tive excitation of helical sound waves and the subsequent read-
out. In an optomechanical setting, the helical sound waves can
be launched by carefully crafting the applied radiation pressure
force. For the typical dimensions of existing snowflake optome-
chanical devices operating in the telecom wavelength band (lat-
tice spacing a ≈ 500 nm), the required force could be engineered
using tightly focused intensity-modulated laser beams impinging
from above on three different snowflake triangles. The readout
could occur by measuring motionally induced sidebands on the
reflection of a laser beam. Although the direct radiation pres-
sure of the beam will induce rather weak vibrations, they could
still be resolved using optical heterodyning techniques. Alter-
natively, in a structure scaled up 10 times, selected triangles
could host defect mode optical nanocavities. This would boost
the radiation pressure force and the readout precision by the
cavity finesse (SI Appendix). Helical sound waves can then be
launched by either directly modulating the light intensity or a
photon–phonon conversion scheme, using a strong red-detuned
drive, with signal photons injected at resonance. In the micron
regime one can benefit from electromechanical interactions. A

thin film of conducting material deposited on top of the sili-
con slab in combination with a thin conducting needle pointing
toward the desired triangles forms a capacitor. In this setting, an
a.c. voltage would induce the required driving force. The vibra-
tions could be read out in the same setup as they are imprinted in
the currents through the needles. In a different electromechani-
cal approach, the phononic crystal could be made out of a piezo-
electric material and excitation and readout occur via piezoelec-
tric transducers (39).

We have shown how to engineer pseudomagnetic fields for
sound at the nanoscale purely by geometrical means in a well-
established platform. Our approach is based on the smooth
breaking of the C6 or the C3v point groups and the discrete trans-
lational symmetry in a patterned material; it is, thus, of a very
general nature and directly applies to photonic crystals as well.
Indeed, the same geometrical modifications that have led to the
pseudomagnetic fields for sound investigated in our work will
also create pseudomagnetic fields for light (30, 38) in the same
setup. Our approach offers a paradigm to design helical pho-
tonic and phononic waveguides based on pseudomagnetic fields.
In addition to edge state transport, our approach allows for the
design of arbitrary spatial distributions of pseudomagnetic fields,
which could be used to study bulk phonon transport under the
action of artificial Lorentz forces.
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