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Topological phase transitions and chiral inelastic
transport induced by the squeezing of light
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There is enormous interest in engineering topological photonic systems. Despite intense

activity, most works on topological photonic states (and more generally bosonic states)

amount in the end to replicating a well-known fermionic single-particle Hamiltonian. Here we

show how the squeezing of light can lead to the formation of qualitatively new kinds of

topological states. Such states are characterized by non-trivial Chern numbers, and exhibit

protected edge modes, which give rise to chiral elastic and inelastic photon transport. These

topological bosonic states are not equivalent to their fermionic (topological superconductor)

counterparts and, in addition, cannot be mapped by a local transformation onto topological

states found in particle-conserving models. They thus represent a new type of topological

system. We study this physics in detail in the case of a kagome lattice model, and discuss

possible realizations using nonlinear photonic crystals or superconducting circuits.
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W
aves are not only ubiquitous in physics, but the
behaviour of linear waves is also known to be very
generic, with many features that are independent of

the specific physical realization. This has traditionally allowed us
to transfer insights gained in one system (for example, sound
waves) to other systems (for example, matter waves). That
strategy has even been successful for more advanced concepts in
the field of wave transport. One important recent example of this
kind is the physics of topological wave transport, where waves can
propagate along the boundaries of a sample, in a one-way chiral
manner that is robust against disorder scattering. While first
discovered for electron waves, this phenomenon has by now also
been explored for a variety of other waves in a diverse set of
systems, including cold atoms1, photonic systems2 and more
recently phononic systems3–9.

In the case of topological wave transport, the connection
between waves in different physical implementations can actually
be so close that the calculations turn out to be the same. In
particular, if we are dealing with matter waves moving in a periodic
potential, the results do not depend on whether they are bosons or
fermions, as long as interactions do not matter. The single-particle
wave equation to be solved happens to be exactly the same. This
has allowed to envision and realize photonic analogues of
quantum-Hall effect10–18, the spin Hall effect19–22, Floquet
topological insulators23,24 and even Majorana-like modes25. More
generally, the well-known classification of electronic band
structures based on the dimensionality and certain generalized
symmetries26 directly applies to photonic systems provided that
the particle number is conserved. As we now discuss, this simple
correspondence will fail in the presence of squeezing.

Consider the most general quadratic Hamiltonian describing
photons in a periodic potential in the presence of parametric
driving:

Ĥ ¼
X
k;n

en k½ �b̂yk;nb̂k;n þ
X
k;n;n0

lnn0 k½ �b̂yk;nb̂y� k;n0 þ h:c:
� �

: ð1Þ

The first term describes a non-interacting photonic band
structure, where b̂k;n annihilates a photon with quasimomentum
k in the n-th band. The remaining two-mode squeezing terms are
induced by parametric driving and do not conserve the excitation
number. As we discuss below, they can be controllably realized in
a number of different photonic settings. While superficially
similar to pairing terms in a superconductor, these two-mode
squeezing terms have a profoundly different effect in a bosonic
system, as there is no limit to the occupancy of a particular
single-particle state. They can give rise to highly entangled
ground states, and even to instabilities.

Given these differences, it is natural to ask how anomalous
pairing terms can directly lead to topological phases of light. In
this work, we study the topological properties of two-dimensional
photonic systems described by Equation (1), in the case where the
underlying particle-conserving band structure has no topological
structure, and where the parametric driving terms do not make
the system unstable. We show that the introduction of particle
non-conserving terms can break time-reversal symmetry (TRS) in
a manner that is distinct from having introduced a synthetic
gauge field, and can lead to the formation of bands having a non-
trivial pattern of (suitably defined) quantized Chern numbers.
This in turn leads to the formation of protected chiral edge
modes: unlike the particle-conserving case, these modes can
mediate a protected inelastic (but still coherent) scattering
mechanism along the edge (that is, a probe field injected into
the edge of the sample will travel along the edge, but emerge at a
different frequency). In general, the topological phases we find
here are distinct both from those obtained in the particle-
conserving case, and from those found in topological super-
conductors. We also discuss possible realizations of this model
using a nonlinear photonic crystal or superconducting microwave
circuits. Finally, we discuss the formal analogies and crucial
differences between the topological phases of light investigated
here and those recently proposed for other kinds of Bogoliubov
quasiparicles27–31 (see Discussion section).

Results
Kagome lattice model. For concreteness, we start with a system of
bosons on a kagome lattice (Fig.1),

Ĥ0 ¼
X

j

o0âyj âj� J
X
hj;j0i

âyj âj0 ð2Þ

(we set ‘ ¼ 1). Here we denote by âj the photon annihilation
operator associated with lattice site j, where the vector site index has
the form j¼ (j1,j2,s). j1,j2AZ labels a particular unit cell of the
lattice, while the index s¼A,B,C labels the element of the sublattice.
hj,j0i indicates the sum over nearest neighbours, and J is the (real
valued) nearest-neighbour hopping rate; o0 plays the role of an
onsite energy. As there are no phases associated with the hopping
terms, this Hamiltonian is time-reversal symmetric and topologi-
cally trivial. We chose the kagome lattice because it is directly
realizable both in quantum optomechanics5 and in arrays of super-
conducting cavity arrays13,16; it is also the simplest model where
purely local parametric driving can result in a topological phase.

We next introduce quadratic squeezing terms to this
Hamiltonian that preserve the translational symmetry of
the lattice and that are no more non-local than our original,
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Figure 1 | Setup figure. (a) An array of nonlinear cavities forming a kagome lattice. (b) Photons hop between nearest-neighbour sites with rate J. Each

cavity is driven parametrically leading to the creation of photon pairs on the same lattice site (rate non) and on nearest-neighbour sites (rate noff). A spatial

pattern of the driving phase is imprinted on the parametric interactions, breaking the time-reversal symmetry (but preserving the C3 rotational symmetry).
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nearest-neighbour hopping Hamiltonian:

ĤL ¼ �
1
2

non

X
j

eifs â
y
j â
y
j þ noff

X
hj;j0i

eifss0 â
y
j â
y
j0

2
4

3
5þ h:c: ð3Þ

Such terms generically arise from having a nonlinear interaction
with a driven auxiliary pump mode (which can be treated
classically) on each site, see for example, ref. 32. As we discuss
below, the variation in phases in ĤL from site to site could be
achieved by a corresponding variation of the driving phase of the
pump. Note that we are working in a rotating frame where this
interaction is time independent, and thus o0 should be
interpreted as the detuning between the parametric driving and
the true onsite (cavity) frequency ocav (that is, o0¼ocav�oL/2,
where the parametric driving is at a frequency oL). The
parametric driving can cause the system to become unstable;
we will thus require that the onsite energy (that is, parametric
drive detuning) o0 be sufficiently large that each parametric
driving term is non-resonant enough to ensure stability. If one
keeps o0 fixed, this means that the parametric driving amplitudes
non, noff will be limited to some fraction of o0 (the particular value
of which depends on J, Supplementary Note 1).

For a generic choice of phases in the parametric driving
Hamiltonian of Equation (3), it is no longer possible to find a
gauge where Ĥ ¼ Ĥ0þ ĤL is purely real when expressed in
terms of real-space annihilation operators: hence, even though the
hopping Hamiltonian Ĥ0 corresponds to strictly zero flux, the
parametric driving can itself break TRS. In what follows, we will
focus for simplicity on situations where time reversal and particle
conservation are the only symmetries broken by the parametric
driving: they will maintain the inversion and C3 rotational
symmetry of the kagome lattice. We will also make a global gauge
transformation so that noff is purely real, while non¼ |non|eijn.
In this case, the only possible choices for the f phases have the
form (fA,fB,fC)¼ (fAB,fBC,fCA)¼±(0,d,2d) with d¼ 2pmn/3,
where mn is an integer and is the vorticity of the parametric
driving phases. We stress that these phases (and hence the sign of
the TRS breaking) are determined by the phases of the pump
modes used to generate the parametric interaction.

Gap opening and non-trivial topology. Ĥ0 is the standard
tight-binding kagome Hamiltonian for zero magnetic field, and
does not have band gaps: the upper and middle bands touch
at the symmetry point C�(0,0), whereas the middle and
lower bands touch at the symmetry points K¼ (2p/3,0) and
K0 ¼ (p/3,p/(3)1/2) where they form Dirac cones (Fig. 2a).

Turning on the pairing terms, the Hamiltonian
Ĥ ¼ Ĥ0þ ĤL can be diagonalized in the standard manner as
Ĥ ¼

P
n;k En k½ �b̂wn;kb̂n;k , where the b̂n;k are canonical bosonic

annihilation operators determined by a Bogoliubov transforma-
tion of the form (see Methods section):

b̂yn;k ¼
X

s¼A;B;C

un;k s½ �âyk;s� vn;k s½ �â� k;s: ð4Þ

Here âk;s are the annihilation operators in quasimomentum
space, and n¼ 1,2,3 is a band index; we count the bands by
increasing energy. The photonic single-particle spectral function
now shows resonances at both positive and negative frequencies,
±En[k], corresponding to particle- and hole-type bands, Fig. 2d.
Because of the TRS breaking induced by the squeezing terms, the
band structure described by En[k] now exhibits gaps, Fig. 2b;
furthermore, for a finite sized system, one also finds edge modes
in the gap, Fig. 2d.

The above behaviour suggests that the parametric terms have
induced a non-trivial topological structure in the wavefunctions

of the band eigenstates. To quantify this, we first need to properly
identify the Berry phase associated with a bosonic band eigenstate
in the presence of particle non-conserving terms. For each k, the
Bloch Hamiltonian Ĥk corresponds to the Hamiltonian of a
multi-mode parametric amplifier. Unlike the particle-conserving
case, the ground state of such a Hamiltonian is a multi-mode
squeezed state with non-zero photon number; it can thus have a
non-trivial Berry’s phase associated with it when k is varied,
Supplementary Note 2. The Berry phase of interest for us will be
the difference of this ground state Berry phase and that associated
with a single quasiparticle excitation. One finds that the resulting
Berry connection takes the form

An ¼ i k; n j ŝz=k jk; nih : ð5Þ
Here the six vector of Bogoliubov coefficients |k, ni�(un,k[A],
un,k[B], un,k[C], vn,k[A], vn,k[B], vn,k[C]) plays the role of a
singe-particle wavefunction, and ŝz acts in the particle-hole
space, associating þ 1 to the u components and � 1 to the v
components, see Methods section. These effective wavefunctions
obey the symplectic normalization condition

k; n j ŝz jk; n0ih ¼
X

s

u�n;k s½ �un0;k s½ � � v�n;k s½ �vn0;k s½ � ¼ dn;n0 : ð6Þ

Having identified the appropriate Berry connection for a band
eigenstate, the Chern number for a band n is then defined in the
usual manner:

Cn ¼
1

2p

Z
BZ

=�Anð Þ � ẑ: ð7Þ

The definition in Eq. (5) agrees with that presented in ref. 27 and
(in one-dimension) ref. 29; standard arguments27 show that
the Cn are integers with the usual properties. We note that,
as for superconductors, breaking the U(1) (particle-conservation)
symmetry remains compatible with a first-quantized picture after
doubling the number of bands. The additional hole bands are
connected to the standard particle bands by a particle–hole
symmetry; see Methods section. In bosonic systems, the
requirement of stability generally implies that particle and hole
bands can not touch; this is true for our system. Thus, the sum of
the Chern numbers over the particle bands (with E40) must be
zero, and there cannot be any edge states with energies below the
lowest particle bulk band (or in particular, at zero energy);
Supplementary Note 1.

In the special case where we only have onsite parametric
driving (that is, noff¼ 0,nona0), the Chern numbers can be
calculated analytically (Supplementary Note 3). They are uniquely
fixed by the pump vorticity. If mn¼ 0, we have TRS and the band
structure is gapless, while for mn¼±1, C¼ (81, 0, ±1). This
set of topological phases also occurs in a particle-number
conserving model on the kagome lattice with a staggered
magnetic field, that is, the Oghushi–Murakami–Nagaosa
(OMN) model of the anomalous quantum-Hall effect33,34.

In the general case, where we include offsite parametric
driving, entirely new phases appear. We have computed the
Chern numbers here numerically, using the approach of ref. 35.
In Fig. 3a, we show the topological phase diagram of our system,
where J/o0 and mn are held fixed, while the parametric drive
strengths non,noff are varied. Different colours correspond to
different triplets C�(C1,C2,C3) of the band Chern numbers, with
grey and dark-grey corresponding to the two phases already
present in the OMN model. Strikingly, a finite off-diagonal
coupling noff generates a large variety of phases which are not
present in the OMN model, including phases having bands with
|Cn|41. The border between different topological phases repre-
sent topological phase transitions, and correspond to parameter
values where a pair of bands touch at a particular symmetry
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point; we discuss this further below. Via a standard bulk-
boundary correspondence (Supplementary Note 4), the band
Chern numbers for a particular phase determine the number of
protected edge states that will be present in a system with a
boundary; as usual, the number of edge states in a particular
bandgap is obtained by summing the Chern numbers of lower-
lying bands. We discuss these edge states in greater detail in a
following subsection. Finally, the black regions in the phase
diagram indicate regimes of instability, which occur when the
parametric driving strength becomes too strong.

Dressed-state picture. To gain further insight into the structure
of the topological phases found above, it is useful to work in a
dressed-state basis that eliminates the local parametric driving
terms from our Hamiltonian. We thus first diagonalize the purely
local terms in the Hamiltonian; for each lattice site j we have

Ĥj ¼ o0âyj âj �
1
2

noneifj âyj âyj þ h:c:
h i

¼ ~oâyj âj : ð8Þ

Here ~o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0� n2
on

p
, and the annihilation operators âj

are given by a local Bogoliubov (squeezing) transformation
âj ¼ eifj e� ijn=2ðcoshðrÞaj� eifj eijnsinhðrÞâwj Þ, where the squeez-
ing factor r is

r ¼ 1
4

ln
o0þ non

o0� non

� �
: ð9Þ

On a physical level, the local parametric driving terms attempt to
drive each site into a squeezed vacuum state with squeeze para-
meter r; the âj quasiparticles correspond to excitations above this
reference state. Note that we have included an overall phase factor
in the definition of the âj, which will simplify the final form of the
full Hamiltonian.

In this new basis of local quasiparticles, our full Hamiltonian
takes the form

Ĥ ¼
X

j

~oâyj âj�
X
hj;li

~Jjlâ
y
j âl�

~n
2

X
hj;li

âyj â
y
l þ h:c:

0
@

1
A: ð10Þ
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Figure 2 | Topological Band structure. (a,b) 3D plots of the bulk band structure. The hexagonal Brillouin zone is also shown. (a) In the absence of

parametric driving, neighbouring bands touch at the rotational symmetry points K, K0 and C. (b) The parametric driving opens a gap between subsequent

bands. For the chosen parameters, there is a global band gap between the second and third band. (d) Hole and particle bands, ±Em[kx], in a strip geometry

(sketched in c). The line intensity is proportional to the weight of the corresponding resonance in the photon spectral function, Supplementary Note 1. The

edge states localized on the right (left) edge, plotted in green (blue), have positive (negative) velocity. Parameters: Hopping rate J¼0.02o0 (o0 is the

onsite frequency); (b,d), the parametric couplings are non¼ �0.085o0 and noff¼0.22o0.
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Figure 3 | Symplectic Topological phase diagrams. (a)Topological phase diagram for the parametrically driven kagome lattice model. The y (x) axis

corresponds to the strength of the onsite parametric drive non (offsite parametric drive noff), and different colours correspond to different triplets

C¼ (C1,C2,C3) of Chern numbers for the three bands of the model. Note that only the grey and dark-grey phases are found in the particle-conserving version

of our model with a staggered field. We have fixed the hopping rate J/o0¼0.02, and the vorticity of the pump mn¼ 1. (b) Same phase diagram, but now

plotted in terms of the effective flux F and effective parametric drive ~n experienced by a quasiparticles.
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The transformation has mixed the hopping terms with the
non-local parametric terms: The effective counter-clockwise
hopping matrix element is

~Jjl ¼ Jeidþ e3id=2 2J cos
d
2

� �
sinh2rþ noff sinh 2r cos

d
2
þjn

� �� �
;

ð11Þ

and the magnitude of the effective non-local parametric driving is

j~n j¼ j noff e� iðd=2þjnÞ þ 2noff cos d=2þjnð Þsinh2 r

þ J sinh 2r cos d=2ð Þ j :
ð12Þ

Note that the phase of ~n can be eliminated by a global gauge
transformation, and hence it plays no role; we thus take ~n to be
real in what follows.

Our model takes on a much simpler form in the new basis: the
onsite parametric driving is gone, and the non-local parametric
driving is real. Most crucially, the effective hoppings can now
have spatially varying phases, which depend both on the vorticity
of the parametric driving in ĤL (through d), and the magnitude of
the onsite squeezing (through r). In this transformed basis, the
effective hopping phases are the only route to breaking TRS.
Our model has thus been mapped onto the standard OMN model
for the anomalous quantum-Hall effect, with an additional
(purely real) nearest-neighbour two-mode squeezing interaction.
In the regime where the parametric interactions between the â
quasiparticles are negligible (Supplementary Note 3), the complex
phases correspond in the usual manner to a synthetic gauge field
(that is, the effective flux F piercing a triangular plaquette would
be F¼ 3arg~J). In other words, the squeezing creates a synthetic
gauge field for Bogoliubov quasiparticles. However, in the
presence of substantial parametric interaction between â
quasiparticles, the parameter F can not be interpreted anymore
as a flux: a flux of 2p can not be eliminated by a gauge
transformation because the complex phases reappear in the
parametric terms. In that case, only a periodicity of 6p in F
is retained, since that corresponds to having trivial hopping
phases of 2p.

Understanding the topological structure of this transformed
Hamiltonian is completely sufficient for our purposes: one can
easily show that the Chern number of a band is invariant under
any local Bogoliubov transformation, hence the Chern numbers
obtained from the transformed Hamiltonian in Equation (8)
will coincide exactly with those obtained from the original
Hamiltonian in Equation (3). We thus see that the topological
structure of our system is controlled completely by only three
dimensionless parameters: the flux F (associated with the
hopping phases), the ratio j ~n=~J j, and the ratio ~o= j ~J j.

The topological phase diagram for the effective model is shown
in Fig. 3b. Again, one sees that as soon as the effective non-local
parametric drive ~n is non-zero, topological phases distinct from
the standard (particle-conserving) OMN model are possible. The
sign of the parametric pump vorticity mn determines the sign of
the effective flux F, c.f. Equation (11). As such, the right half of
Fig. 3b (corresponding to F 4 0) is a deformed version of the
phase diagram of the original model for pump vorticity mn¼ 1, as
plotted in Fig. 3a. Changing the sign of mn (and hence F) simply
flips the sign of all Chern numbers, Supplementary Note 3.

Our effective model provides a more direct means for
understanding the boundaries between different topological
phases. Most of these are associated with the crossing of bands
at one or more high-symmetry points in the Brillouin zone;
this allows an analytic calculation of the phase boundary
(Supplementary Note 3). Perhaps most striking in Fig. 3b is the
horizontal boundary (labelled M), occurring at a finite value of

the effective offsite parametric drive, ~n �
ffiffiffiffiffiffi
~J ~o

p
. This boundary is

set by the closing of a band gap at the M points; as these points
are associated with the decoupling of one sublattice from the
other two, this boundary is insensitive to the flux F. Similarly, the
vertical line labelled T denotes a line where the system has TRS,
and all bands cross at the symmetry points K, K0 and C. The case
of zero pump vorticity mn¼ 0 (not shown) is also interesting.
Here the effective flux F depends on the strength of the
parametric drivings, but is always constrained to be 0 or 3p. This
implies that the effective Hamiltonian has TRS, even though the
original Hamiltonian may not (that is, if Im noffa0, the original
Hamiltonian does not have TRS). For mn¼ 0, the parametric
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(marked in yellow) at the edge of a finite sample. The probability map of the light transmitted inelastically at frequency oL�op (where oL is the frequency

of the drive tone applied to the auxiliary pump modes) clearly shows that the transport is chiral. (b) The elastic and inelastic transmission probability to a
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of the relevant scattering processes and energy scales. The inelastic (elastic) transmission has a larger rate when the light is injected in the hole (particle)

band gap. Parameters: Hopping rate J¼0.02o0 (o0 is the onsite frequency), parametric couplings non¼0.4o0 and noff¼0.02o0, optical decay rate
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NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10779 ARTICLE

NATURE COMMUNICATIONS | 7:10779 | DOI: 10.1038/ncomms10779 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


drivings do not open any band gap and the Chern numbers are
not well defined.

Edge states and transport. Despite their modified definition,
the Chern numbers associated with our Bogoliubov bands still
guarantee the existence of protected chiral edge modes in a
system with boundaries via a standard bulk-boundary corre-
spondence, see Supplementary Note 4. These states can be used to
transport photons by exciting them with an auxiliary probe laser
beam, which is focused on an edge site and at the correct
frequency. The lack of particle-number conservation manifests
itself directly in the properties of the edge states: along with the
standard elastic transmission they can also mediate inelastic
scattering processes. In terms of the original lab frame, light
injected at a frequency op can emerge on the edge at frequency
oL�op, where oL is the frequency of the laser parametrically
driving the system. This is analogous to the idler output
of a parametric amplifier. Here both signal and idler have a
topologically protected chirality.

Shown in Fig. 4 are the results of a linear response calculation
describing such an experiment, applied to a finite system with
corners. We incorporate a finite photon decay rate k in the
standard input–output formalism, see Methods section.
Narrow-band probe light inside a topological band gap is applied
to a site on the edge, and the resulting inelastic transmission
probabilities to each site on the lattice are plotted, Fig. 4a. One
clearly sees that the probe light is transmitted in a unidirectional
way along the edge of the sample, and is even able to turn the
corner without significant backscatter. The corresponding elastic
transmission (not shown) is also chiral and shows the same
spatial dependence. In Fig. 4b we show the elastic and inelastic
transmissions to the sites indicated in red (rescaled by the overall
transmission, 1�R where R is the reflection probability at the
injection site) as a function of the probe frequency op. By
scanning the laser probe frequency, one can separately address
particle and hole band gaps. The relative intensity of the inelastic
scattering component is highly enhanced when the probe beam is
inside a hole band gap, see also the sketches in Fig. 4c,d. When
the parametric interaction between the â quasiparticles is
negligible, the ratio of elastic and inelastic transmissions depends
only on the squeezing factor r, (c.f. Equation (9)), see Methods
section.

Physical realization. Systems of this type could be implemented
in photonic crystal coupled cavity arrays36 fabricated from
nonlinear optical w2 materials37–39. The array of optical modes
participating in the transport would be supplemented by pump
modes (resonant with the pump laser at twice the frequency).
One type of pump mode could be engineered to be spatially co-
localized with the transport modes (non processes), while others
could be located in-between (noff). The required periodic phase
pattern of the pump laser can be implemented using spatial light
modulators or a suitable superposition of several laser beams
impinging on the plane of the crystal. One method for realizing
the required kagome lattice of defect cavities was discussed in
ref. 5. Optomechanical systems offer another route towards
generating optical squeezing terms40,41, via the mechanically
induced Kerr interaction, and this could be exploited to create an
optomechanical array with a photon Hamiltonian of the type
discussed here. Alternatively, these systems can be driven by two
laser beams to create phononic squeezing terms42. A fourth
alternative consists in superconducting microwave circuits of
coupled resonators, where Josephson junctions can be embedded
to introduce w2 and higher order nonlinearities, as demonstrated
in refs 43,44. Kagome lattices of superconducting resonators have
recently been implemented45.

Discussion
Before concluding, it is worthwhile to discuss the connections
between our work and other recent studies. A Hamiltonian
of the general form of Equation (1) arises naturally in the
mean-field description of a Bose-condensed phase. In this
setting, the anomalous pairing terms describe the interactions
with the condensate treated at the mean-field level. A few
recent studies have proposed to take advantage of these
interactions to selectively populate topological edge states28,30

or, closer to our study, to induce novel topological phases.
These include a study of a magnonic crystal27, as well as
general Bose–Einstein condensates in one-dimension29 and in
two-dimensions31.

There are some crucial differences between the above studies
and our work. In our case, Equation (1) describes the real
particles of our system, not quasiparticles defined above some
background. This difference is not just a question of semantics: in
our case, topological effects can directly be seen by detecting
photons, whereas in refs 29,31, one would need to isolate the
contribution of a small number of Bogoliubov quasiparticles
sitting on a much larger background of condensed particles. In
addition, in our work the pairing terms in Equation (1) are
achieved by driving the system, implying that negative and
positive frequencies are clearly physically distinguished (that is,
they are defined relative to a non-zero pump frequency). This is
at the heart of the topologically protected inelastic scattering
mechanism we describe, and is something that is not present in
previous studies.

Our work opens the door to a number of interesting new
directions. On the more practical side, one could attempt to
exploit the unique edge states in our system to facilitate
directional, quantum-limited amplification. On the more funda-
mental level, one could use insights from the corresponding
disorder problem46 and attempt to develop a full characterization
of particle non-conserving bosonic topological states that are
described by quadratic Hamiltonians. This would then be a
counterpart to the classification already developed for fermionic
systems26.

Methods
Bogoliubov transformation and first-quantized picture. We find the normal
mode decompositions leading to the band structures in Fig. 2 and the topological
phase diagrams in Fig. 3 by introducing a first-quantized picture. Since the
relevant Hamiltonians do not conserve the excitation number, this is only possible
after doubling the degrees of freedom. This is achieved by grouping all annihilation
operators with quasimomentum k and the creation operators with quasimo-
mentum � k in the 2N vector of operators Ĉk ¼ ðâk1; . . . ; âkN ; â

w
� k1; . . . ; âw

� kN Þ
(where N is the unit cell dimension), and by casting the second quantized
Hamiltonian Ĥ in the form

Ĥ ¼ 1
2

X
k

Ĉyk ĥ kð ÞĈk : ð13Þ

The 2N� 2N hermitian matrix ĥ kð Þ plays the role of a single-particle Hamiltonian
and is referred to as the Bogoliubov de Gennes Hamiltonian. By definition
of the normal modes Ĥ ¼

P
k;n En k½ �b̂wn;k b̂n;k , we have ½Ĥ; b̂wn;k � ¼ En k½ �b̂wn;k .

By plugging into the above equation the Bogoliubov ansatz Equation (4) one
immediately finds

ĥ kð Þ knj i ¼ En k½ �ŝz jkni: ð14Þ

Likewise, from Ĥ; bn;� k

	 

¼ � En � k½ �b̂n;� k one finds

ĥ kð Þ Kŝx � knj ið Þ ¼ � En � k½ �ŝz Kŝx � knj ið Þ: ð15Þ
Here K denotes the complex conjugation and the matrix ŝx exchanges the u’s and
the v’s Bogoliubov coefficients,

ŝx ¼
0 1N

1N 0

� �
:

Thus, the spectrum of the 2N matrix ŝz ĥ kð Þ is formed by the set of 2N
eigenenergies En[k] (belonging to the particle bands) and �En[� k] (belonging
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to the hole bands). Vice versa, to calculate the eigenenergies En[k] and � En[� k]
and the vector of Bogoliubov coefficients in Equation (4), we have to solve the
eigenvalue problem

ŝz ĥ kð Þ mj i ¼ lm mj i: ð16Þ
The solutions we are interested in should also display the symplectic
orthonormality relations Equation (6).

We note in passing that so far we have implicitly assumed that the normal
mode decomposition is possible. However, this is not always the case. When the
matrix ŝz ĥ kð Þ has any complex eigenvalue, the Hamiltonian is unstable. Moreover,
at the border of the stable and unstable parameter regions, the matrix ŝz ĥ kð Þ is not
diagonalizable. The Supplementary Note 1 contains a stability analysis of our
specific model.

In the stable regime of interest here the matrix ŝz ĥ kð Þ is diagonalizable and all
its eigenvalues are real. In this case, its eigenvectors |mi can be chosen to be
mutually ŝz orthogonal. In addition, there are exactly N positive (negative) norm
eigenvectors. Thus, it is always possible to enforce the symplectic orthonormality
relations Equation (6) by identifying the (appropriately normalized) positive and
negative norm solutions with |kni and Kŝx � knj i, respectively. The corresponding
eigenvalues are then to be identified with En[k] (particle band structure) and
�En[� k] (hole band structure), respectively

Particle–hole symmetry. The Bogoliubov de Gennes Hamiltonian has
the generalized symmetry Cwĥ kð ÞC ¼ � ĥ � kð Þ where the charge conjugation
operator C is anti-unitary and C2¼ 12N. Thus, our system represents the bosonic
analogue of a superconductor in the Class D of the standard topological
classification. This is a simple consequence of the doubling of the degrees
of freedom in the single-particle picture. It simply reflects that the set of
ladder operators b̂wn;k and b̂n;� k calculated from ĥ kð Þ are the adjoint of the

set of operators b̂n;k and b̂wn;� k calculated from ĥ � kð Þ.

Details of the transport calculations. In our transport calculations we have
included photon decay. We adopt the standard description of the dissipative
dynamics of photonic systems in terms of the Langevin equation and the
input–output theory47, for each site:

_̂aj ¼ i Ĥ; âj
	 


�kâj=2þ
ffiffiffi
k
p

â inð Þ
j : ð17Þ

In practice, we consider an array of detuned parametric amplifiers with intensity
decay rate k and add to the standard description of each parametric amplifier the
inter-cell coherent coupling described in the main text. The last term describes

the influence of the input field â inð Þ
j injected by an additional probe drive including

also the environment vacuum fluctuations. The field â outð Þ
j leaking out of each

cavity at site j is given by the input–output relations

â outð Þ
j ¼ â inð Þ

j �
ffiffiffi
k
p

âj: ð18Þ

The above formulas give an accurate description of a photonic system where the
intrinsic losses during injection and inside the system are negligible. Intrinsic
photon absorption can be incorporated by adding another decay channel to the
equation for the light field. It reduces the propagation length but does not change
qualitatively the dynamics.

In Fig. 3, we show the probabilities TE(o, l, j) and TI(o, l, j) that a photon
injected on site j with frequency oin¼oþoL/2 is transmitted elastically
(at frequency oþoL/2) or inelastically (at frequency oL/2�o) to site l where it is
detected. From the Kubo formula and the input–output relations we find

TE o; l; jð Þ ¼ dlj� ik~GE o; l; jð Þ
���� 2
; ð19Þ

TI o; l; jð Þ ¼ k2 ~GI o; l; jð Þ
�� ��2: ð20Þ

Here ~GE=I o; l; jð Þ are the elastic and inelastic components of the Green’s function
in frequency space,

~GE o; l; jð Þ ¼ � i
Z 1
�1

dtY tð Þ âl tð Þ; âyj 0ð Þ
h iED

eiot ; ð21Þ

~GI o; l; jð Þ ¼ � i
Z 1
�1

dtY tð Þ â
y
l tð Þ; â

y
j 0ð Þ

h iED
eiot : ð22Þ

In a N site array with single-particle eigenstates |ni¼ (un[1],y,un[N],
vn[1],y,vn[N])T, the Green’s functions read

GE o; l; jð Þ ¼
X

n

un l½ �u�n j½ �
o� E n½ � þ ik=2

� v�n l½ �vn j½ �
oþ E n½ � þ ik=2

; ð23Þ

GI o; l; jð Þ ¼
X

n

vn l½ �u�n j½ �
o�E n½ � þ ik=2

� u�n l½ �vn j½ �
oþ E n½ � þ ik=2

: ð24Þ

We note that for a probe field inside the bandwidth of the particle (hole) sector but
far detuned from the hole (particle) sector, only the first (second) term of the

summand in Equations (23) and (24) is resonant. Thus, as expected, the inelastic
scattering is comparatively larger when the probe field is in the hole band gap.

It is easy to estimate quantitatively the relative intensities of elastically and
inelastically transmitted light when the parametric interaction of the â Bogoliubov
quasiparticles is small (the regime where F can be interpreted as a synthetic
gauge field experienced by the Bogoliubov quasiparticles). In this case, it is
straightforward to show that |vn[j]/un[j]|Etanhr independent of the eigenstate n
and the site j. By putting together Equations (20, 23, 24) and neglecting the
off-resonant terms we find that for o; ~o44 j ~J j; k; j o� ~o j,

TI o; l; jð Þ � tanh rð Þ2TE o; l; jð Þ � TI �o; l; jð Þ � coth rð Þ2TE �o; l; jð Þ:

These analytical formulas agree quantitatively with the numerical results shown in
Fig. 4b (note that in Fig. 4b the transmission at the output sites is rescaled by the
overall transmission,

P
l a jTI(o, l, j)þTE(o, l, j)).
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