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ABSTRACT: Flame retardants (FR) are inevitable additives to
many plastics. Halogenated organics are effective FRs but are
controversially discussed due to the release of toxic gases during a
fire or their persistence if landfilled. Phosphorus-containing
compounds are effective alternatives to halogenated FRs and have
potential lower toxicity and degradability. In addition, nitrogen-
containing additives were reported to induce synergistic effects with
phosphorus-based FRs. However, no systematic study of the gradual
variation on a single phosphorus FR containing both P−O and P−
N moieties and their comparison to the respective blends of
phosphates and phosphoramides was reported. This study
developed general design principles for P−O- and P−N-based FRs and will help to design effective FRs for various polymers.
We synthesized a library of phosphorus FRs that only differ in their P-binding pattern from each other and studied their
decomposition mechanism in epoxy resins. Systematic control over the decomposition pathways of phosphate (PO(OR)3),
phosphoramidate (PO(OR)2(NHR)), phosphorodiamidate (PO(OR)(NHR)2), phosphoramide (PO(NHR)3), and
their blends was identified, for example, by reducing cis-elimination and the formation of P−N-rich char with increasing
nitrogen content in the P-binding sphere. Our FR epoxy resins can compete with commercial FRs in most cases, but we proved
that the blending of esters and amides outperformed the single-molecule amidates/diamidates due to distinctively different
decomposition mechanisms acting synergistically when blended.
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■ INTRODUCTION

Polymers are omnipresent in our everyday life. However, their
inherent risk of fire makes the use of flame retardants (FRs)
inevitable. For this purpose, halogenated organics were used as
effective FRs, but today these are controversially debated due
to the release of toxic gases during a fire or their persistence if
discarded. Currently, organophosphates are discussed as
promising alternatives to halogenated FRs due to their effective
flame-retardant properties and potential to design nontoxic
and biodegradable FRs.1

The combination of phosphorus FRs (P-FRs) with addi-
tional nitrogen-containing additives resulted in synergistic
effects during a fire by forming phosphorus−nitrogen
intermediates or an increased charring.2 However, a systematic
study of precisely synthesized P-FRs with a variable number of
P−N bonds (such as phosphoramidates and phosphorodiami-
dates, Figure 1) has not been performed. We prepared a series

of aliphatic organophosphates/-amides (1−4) with a precise
binding pattern around the central phosphorus and used them
as a FR additive in epoxy resins. Their in vitro toxicity was also
assessed and compared to commercial halogenated or other
organophosphate-based FRs. Importantly, the effects of the P-
binding pattern (1−4) have been studied during a fire scene to
understand their decomposition pathway and compared to
blends of phosphate and phosphoramide (these are 1 and 4)
on the performance during a simulated fire scenario.
These P-FRs mainly differ in their main mode of action,

which are gas and condensed phase activity. In the condensed
phase, phosphorus-containing materials exhibit FR properties
due to the enhanced formation and stabilization of carbona-
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ceous char, which retains fuel in the condensed phase.
Additionally, an intumescent multicellular char may protect
the underlying polymer from heat, acting as a heat shield.3−5

The increased charring is explained by dehydration of the
polymer and the formation of phosphoric acid derivatives,
leading to cross-linking and aromatization.6 Activity in the gas
phase is mainly due to the formation of PO radicals, slowing
down the exothermic radical process in the combustion zone,
leading to a reduced combustion efficiency and therefore
reducing the heat release.4,7,8

The phosphorus−nitrogen synergism accelerates the poly-
mer phosphorylation by increasing the in situ production of
phosphoric acid due to catalyzing cis-elimination.9 The same is
true for P−N bonds, which are more reactive than P−O bonds
regarding the phosphorylation process. This retains phospho-
rus in the condensed phase and therefore promotes char
formation and stabilization.10 Furthermore, P and N react to
form thermally stable polymeric compounds in the condensed
phase.9 While studies have shown the impact of nitrogen- and
phosphorus-containing FRs,11,12 systematic studies on the
gradual variation of the phosphorus binding pattern and its
impact on the FR mechanism are rare.6 In addition, the
comparison of phosphoramidates and phosphorodiamidates

produced via chemical synthesis against blending the
respective phosphate and phosphoramide, hitherto uninvesti-
gated, is presented herein. The P-FRs are synthesized and
characterized in detail on the molecular level; for example,
degradation temperature and pathway are assessed. They are
used as additive FRs in epoxy resins and are investigated in a
simulated fire scenario with state-of-the-art techniques (LOI,
UL-94, and cone calorimeter).
The knowledge about the varying decomposition mecha-

nisms for combined P−O- and P−N-based FRs will help the
future preparation of biofriendly and effective FRs for various
polymer materials since there is no universal FR design. FRs
are optimized for a special application and matrix. For this task,
it is important to know how the FR degrades to estimate
possible interactions between matrix and FRs during a fire
scenario.13

■ RESULTS AND DISCUSSION

Synthesis and Design of Materials. To investigate the
influence of the P−O vs P−N ratio on FR efficiency, a
systematic library of organophosphates/-amidates is necessary.
Four P-FRs with a central phosphorus atom and three ω-

Figure 1. Characterization of flame retardants: amide (1), diamidate (2), amidate (3), and phosphate (4) (a) Schematic representation of the
synthesis: the amide (1) and phosphate (4) are a one-step synthesis and the diamidate (2) and amidate (3) are a two-step synthesis. (b) 31P−{1H}
NMR of the flame retardants in CDCl3. (c) Mass loss of the flame retardants in thermogravimetric tests; char yield increase with increasing
nitrogen content. (d) Correlation of relative amount of cis-elimination and hydrolysis in the released gases during pyrolysis GC-MS (connection
between the data points are only to guide the eye).
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hexenyl chains were synthesized. The organic side chains
ensure miscibility with the epoxy matrix, and the double bonds
were introduced to increase the charring performance.14,15

Tri(hex-5-en-1-yl)phosphoramide (1), tri(hex-5-en-1-yl)-
phosphorodiamidate (2), tri(hex-5-en-1-yl)phosphoramidate
(3), and tri(hex-5-en-1-yl)phosphate (4) were synthesized
starting from POCl3 via esterification with 5-hexen-1-ol or
amidation with hex-5-en-1-amine (Figure 1a). The phosphor-
amide (1) and the phosphate (4) were prepared in a single
step. In contrast, the phosphorodiamidate (2) and the
phosphoramidate (3) were synthesized in two steps to
guarantee the correct binding pattern, first by esterification
followed by the amidation (the amidation as the first step may
result in multiple amidations). All P-FRs were of sufficient
purity after the synthesis without the need for additional
purification steps as proven by 1H and 31P NMR spectra
(Figures S2−S13 and Figure 1b). 31P NMR spectroscopy is a
precise technique to control the correct binding pattern and
purity of the compounds: the phosphate exhibited a single
resonance at −0.67 ppm, whereas the signal shifted downfield
with increasing nitrogen content (Figure 1b). By these

procedures, all P-FRs were easily available up to at least 50 g
with standard university lab equipment.
Organophosphorus compounds are currently considered as

alternatives for halogenated FRs16,17 due to their potentially
lower toxicity.18−20 To evaluate their toxicity, we tested 1−4 in
fungi and plant cells. Additionally, we used reporter gene
assays based on yeast and human cells to assess their baseline
toxicity and endocrine activities (estrogenic and antiandro-
genic). Compounds 1, 2, and 4 induced baseline toxicity
increasing in the following order (4 < 2 < 1) but were less
toxic than the halogenated commercial tetrabromo bisphenol A
(see the Supporting Information for details). While none of the
compounds were estrogenic, 3 and 4 induced some
antiandrogenic activity (4 < 3). Although the compounds
partly induced toxicity, the actual concentrations of FRs
leaching from finished products still need to be determined.

Decomposition Studies. Phosphoramides exhibit higher
thermal stability, lower volatility, and higher viscosity due to
additional hydrogen bonding compared to their analogue
phosphates.21 These properties may increase the overlap of the
decomposition temperatures of both matrix and flame

Figure 2. Characterization of flame-retarded epoxy resins. (a) Schematic representation of the epoxy resin synthesis. (b) Glass transition
temperature of epoxy resin and flame-retarded composites. (c) Thermogravimetry (10 K min−1; N2) of the epoxy resins with FRs; increase of char
yield with increasing nitrogen content of the flame retardant.
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retardant. This overlap leads to higher reactivity during the
pyrolysis and an increased residue amount as a higher
phosphorus content is maintained in the condensed phase
due to interactions of the FR with the matrix and their
respective decomposition products.22,23

The combination of TGA, FTIR, and pyrolysis GC-MS gave
a deeper insight into how the FRs decompose under pyrolytic
conditions.
For the pure FRs (1−4) mass loss under pyrolysis, measured

by thermogravimetric analysis (TGA, Figure 1c), proved the
gradual change of the decomposition behavior according to the
structure variation from 1 to 4; this already suggests a possible
effect on the FR mechanism during a fire. The phosphoramide
(1) proved the highest decomposition temperature (Tmax) at
317 °C, which decreased with increasing O content of the FR
to 274 °C for 2, 269 °C for 3, and 250 °C for 4. In addition,
the char yield (measured at 600 °C) decreased from 1 with 17
wt % to <1 wt % for 4, indicating a different activity of the pure
compounds in the gas and/or condensed phase. The
phosphate decomposition curve followed a typical behavior
of a vaporizing material with a clear boiling point while with
increasing nitrogen content the degradation occurs via multiple
decomposition steps over a broader temperature range. As P−
N bonds are present in the FR, they can form more stable
intermediates through a polymerization process that require
higher amounts of thermal energy to vaporize, if at all, as is
noticeable by the subsequent increase in Tmax and higher
amount of residue for each additional nitrogen introduced.
The FTIR spectra from the evolved gases (measured at Tmax,

Figure S18) proved the presence of several decomposition
products, among them those that correspond to hydrolysis
products, i.e., 5-hexen-1-ol and hex-5-en-1-amine (after
scission of the P−O or P−N bond, respectively). The spectra
also indicated the presence of derivatives containing PO and
P−O moieties at 1299 and 1030 cm−1 for the phosphate (4),
while we detected additional vibrations for the (NH2)−PO
band at 1159 cm−1 during the decomposition of 2 and 3. In
addition, all nitrogen-containing P-FRs exhibited C−N bands
at 1075 cm−1, P−N−C or P−N−P bands at 980 cm−1, and N−
H bands at 769 cm−1. For all nitrogen-containing FRs at higher
temperatures (T > Tmax) P−N bands between 1330 and
1300 cm−1 and two characteristic bands for ammonia at 965
and 930 cm−1 were detected, albeit shifted or overlapped with
other signals, pointing to the formation of incombustible gas
resulting in flame dilution.
Pyrolysis GC-MS supports these results and further proves

the presence of the major decomposition products. Compound
4 decomposed mainly by a cis-elimination during pyrolysis as
indicated by the high amount of 1,5-hexadiene which was
detected at a retention time of 2.6 min (Figure S29). Also, the
other P−O-containing FRs (2 and 3) released 1,5-hexadiene
during decomposition, but the amount of cis-elimination
decreased with increasing P−N content (Figure 1d). Addi-
tionally, 5-hexen-1-amine and 5-hexen-1-ol were detected for 2
and 3 (retention at 6.1 and 6.7 min in Figure S29).
Additionally, for 2−4, phosphoric acid derivatives at retention
times of 23.7, 24.6, and 25.8 min were identified,
corresponding to the gas-phase activity of such compounds.
Because of transesterifications during the decomposition, in
the GC elugrams of 3, also compound 4 was detected, while in
the elugram of the pyrolysis GC-MS of 2, transesterification
leads to the formation of 3 and 4. In stark contrast, during the
decomposition of 1, almost no cis-elimination occurred, and

only little amounts of phosphoric acid derivatives were
observed, indicating the formation of nonvolatiles and thus
underlining the condensed phase activity of the phosphor-
amide. This was further supported by solid-state 31P NMR of
the char residues, which exhibited distinct signals for P−N
compounds (Figure S46).

Flame-Retardant Behavior in Epoxies. The FR perform-
ances of 1−4 and blends of 1 and 4 were studied in an epoxy
resin based on bisphenol A diglycidyl ether (DGEBA) and
2,2′-dimethyl-4,4′-methylenebis(cyclohexylamine) (DMC).
The epoxy plates were prepared by mixing DGEBA with
DMC in the presence of 10 wt % of each FR in an aluminum
mold and curing for 3 h at 150 °C (Figure 2a). As the P−NHR
bond may also act as a curing agent under certain conditions,
we performed a control experiment with 1 and phenyl glycidyl
ether at the curing conditions for the epoxy. Under the cross-
linking conditions, no ring-opening of the epoxide occurred
from the P-NHR bond (cf. Figures S14−S16), proving that 1−
3 act as additive, and not reactive, FRs. As a benchmark, the
commercially available and industrially used FR bisphenol A
diphenyl phosphate (BDP) was chosen, as it was already used
successfully in epoxy resins.24,25

Typically, additive FRs act as plasticizers of the epoxy resin
and reduce the glass transition temperature (Tg). All flame-
retarded epoxy resins with 10 wt % 1, 2, 3, or 4 also exhibited
lower Tgs by 36−42 °C compared to the neat epoxy resin. 4
shows the highest decrease of Tg (to 113 °C), while with
increasing amount of NH bonds an increase of the Tgs was
detected, probably due to hydrogen-bonding effects (Figure
2b). Blending of 1 and 4 in a 1:2 or 2:1 molar ratio to
“simulate” the elemental composition of a phosphoramidate
(3b) and phosphorodiamidate (2b) resulted in a slightly
higher Tg compared to the pure 2 and 3 was detected. For
BDP, the Tg of the neat epoxy (155 °C) was reduced to
133 °C. In all cases, the aliphatic FRs 1−4 result in a higher
decrease of Tg compared to the stiff aromatic BDP.26

To understand the differences of 1−4 (and 2b and 3b) on
the behavior of the loaded epoxies during combustion, we
elucidated the FR mode of actions and mechanisms. A crucial
step toward understanding the FR mechanisms is analyzing the
pyrolysis of the epoxy resins with FRs by TGA. The burning
with a stable flame is dominated by an anaerobe pyrolysis,
producing volatile fuel that is combusted in the flame. This
model suits most polymeric materials in most fire scenarios
such as ignition and developing fires and thus for all the
important fire tests for polymeric materials, such as UL 94,
LOI, and flaming combustion in the cone calorimeter.
Although the heating rate is relatively slow, thermogravimetry
under nitrogen is the best common analytical method to
investigate the pyrolysis controlling the burning of polymeric
materials.27 A lower onset temperature of the degradation for
the FR epoxies was detected compared to the neat epoxy. This
was attributed to volatilization of the FRs and is indicated by
an additional decomposition step equal to ∼10 wt %. Notably,
however, the main decomposition step shifts to higher
temperatures with increasing amount of P−O bonds in the
additive. Importantly, for all FR epoxy resins, an increased char
yield was detected, which further increased slightly with
increasing P−N bonds in the FRs (Figure 2c).
While microscale experiments aid in understanding certain

aspects of a material’s fire-retardant properties, they do not
fully evaluate fire behavior on a macroscopic scale. Two
reaction-to-small-flame tests were conducted, namely limiting
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oxygen index (LOI) and the Underwriter’s 94 (UL-94) test, as
well as forced-flaming conditions via cone calorimetry. LOI
measures the lowest oxygen concentration necessary to sustain
combustion in a candle-like setup, while UL-94 measures
dripping and flame-spread behavior in vertical and horizontal
positions.
The pure epoxy resin exhibited an oxygen index (OI) of OI

= 18.7 vol %, proving the inherent flammability of these
materials. When a FR was incorporated, the OI increased to

approximately OI = 23−24 vol %, corresponding to a relative
increase of ca. 22−28%. The addition of any of the tested FRs
increased the OI and slowed down the flame spread and
thereby reduced the fire hazard. However, the differences
between all tested materials are minimal, mostly due to the
relatively low FR loading (10 wt %) and low P content of a
sample (∼1% P in each resin). The P-FRs performed on an
equal level to the benchmark epoxy resin with BDP, indicating
that the burning behavior in OI tests can only be altered with

Figure 3. Cone calorimeter, UL-94, and limiting oxygen index (LOI) tests of the epoxy resins. (a) Summarized results of LOI and UL-94 tests, with
all flame retardants increasing the OI and achieving HB classification in the UL-94 test. (b) Heat release rate over time of epoxy resins, with the
phosphate (4) presenting the lowest peak heat release and the amide (1) the highest. (c) Petrella plot of the different epoxy resins with all flame
retardants having a positive effect (lowering THE), especially the phosphate (4) lowering both fire load and fire growth index and the amide (1)
only lowering the former. (d) Photos of char residue after cone calorimeter test: the epoxy resin has almost no residue; pore size decreases from
phosphate (4) to amide (1) along with an increase in char residue.
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higher loading/higher P content in order attain OI > 27−29
vol %. This is needed to fulfill the demands of diverse flame-
retardancy requirements.14 A similar behavior was obtained
from UL-94 tests, where the benchmark BDP-loaded epoxy
resin failed vertical tests and only achieved an HB rating in
horizontal tests (lowest rating before not passing) due to the
high flammability of epoxy resins. The herein-prepared resins
with P-FRs achieved the same rating, although not all FRs
managed to reduce the horizontal burn speed; most noticeably,
the resin with phosphoramide (1) was barely within the
margin of error of passing HB classification. In all UL-94 tests,
the strong formation of char was visible for the prepared resins
with P-FRs, yet the increase of viscosity of the epoxy resin
resulted in the protective char dripping away from the sample.
These results illustrate that at 10 wt % loading the FRs cannot
stop vertical flame spread due to melt dripping although a
strong char formation is visible. Similar to LOI, better
classification can be achieved with higher FR loading or
higher P content of the sample.
Cone calorimetry measurements proved a significant effect

of all P-FRs on epoxy resins during a simulated fire scenario.
The epoxy plates (10 × 10 × 0.4 cm3) were irradiated with a
heat flux of 50 kW m−2 at a distance of 35 mm, simulating a
developing fire.28 The results of the forced-flaming condition
experiments underlined that the epoxy resin burned with a
high heat release rate (HRR) and lost 99.3 wt % of its mass,
presenting nearly no residue (Figure 3d). All flame-retarded
resins exhibited a clear reduction of peak or heat release rate
(PHRR), an increase in residue yield, a lowering of the total
heat evolved (THE = total heat released (THR) at flame out),
and a reduction of fire growth rate (FIGRA = maximum
(HRR/t)) (Figure 3b,c and Table S4). The epoxy resin loaded
with the phosphate (4) demonstrated the lowest PHRR
(855 kW m−2, reduced by 48%) and THE (78.1 MJ m−2,
reduced by 28%) and displayed a HRR curve corresponding to
a charring material with a protective layer. This behavior was
clearly visible during the experiments as well as in the cross
sections of the residues, as the decomposition of the resin with
4 and the volatilization of its products acted as blowing agents,
creating a voluminous intumescent char that shielded the
underlying material from the heat source. With increasing P−
N content of the FR, a lower reduction of PHRR and THE was
detected. 1, 2, and 3 showed a small plateau at t = 60 s, but the
lack of blowing agent created a char layer, which was unable to
shield the underlying material, leading to additional decom-
position of the epoxy and thus a higher PHRR. Epoxy resins
with 1 as the additive even had a higher PHRR (1832 kW m−2)
than the neat epoxy resin (1696 kW m−2). However, the
residue yields of epoxy resins loaded with 1 (8.4 wt %) was in a
similar range as the best performing epoxy loaded with 4 (9.2
wt %).
All flame-retarded epoxy resins revealed an increase in

residue yield compared to the epoxy resin without FRs. In
pyrolysis investigations, TGA experiments of the pure FRs
demonstrated that 1 presented a large amount of residue while
4 hardly left any. The increase in residue was proportional to
the increase in P−N bonds, i.e., 4 < 3 < 2 < 1. In forced
flaming conditions, this trend was not clearly visible. However,
as has been proven in previous experiments,29 the residue
yields of pure FRs in TGA experiments do not necessarily
correlate with the residue yields of flame-retarded resins.
Specifically, the interactions between FR and matrix govern the
residue yield. For the flame-retarded epoxy resins, although

residue yields were in the order 4 > 2 > 1 > 3, the increased
residue amount for resins with 4 can be explained by the
formation of a protective layer which reduces the mass transfer
of combustible material into the flame zone and shields
underlying material from thermal radiation. For the nitrogen-
containing compounds, the previously noted trend was also
seen, especially given the margin of error for resins with 2,
illustrating that residue yields increase with increasing nitrogen
content in the binding sphere of phosphorus.
The effective heat of combustion (EHC) is the quotient of

the total heat evolved and the total mass loss; therefore, it is a
ratio between these two values. In cone calorimetry experi-
ments, the EHC relates to flame dilution and flame inhibition,
and a reduction in EHC is a parameter for the gas phase
activity of a FR.23 The phosphate (4) displayed a reduction in
EHC of ∼20%, from 29.6 MJ kg−1 for the epoxy resin to
21.6 MJ kg−1 for the resin with 4, which points to gas phase
activity of the FR (Figure 4b). Noticeably, this effect is

minimized if P−N bonds were installed into the FR, as 1, 2,
and 3 reduced the EHC only by ca. 4−5%, indicating that the
gas phase activity of the synthesized P-FRs decreased with the
presence of nitrogen in the chemical structure. Although
residue yields of resins with 1, 2, 3, and 4 are within the same
range (ca. 8−10 wt % mass loss), the ratios between the THEs
and total mass loss changed. This change resulted from flame
dilution and flame inhibition effects which affect THE. The

Figure 4. (a) Phosphorus content determined by elemental analysis
from the residues after cone calorimeter tests (blue bars). Calculated
amount of phosphorus in the gas phase (red bars). (b) Comparison of
effective heat of combustion (EHC) of epoxy resins with and without
FRs. The numbers above the bars represent the relative change to the
non-flame-retarded epoxy resin.
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blended FRs (2b and 3b) were also tested in epoxy resins, and
the results were compared to resins with 2 and 3. The results
show that the blended FRs achieved higher residue yields a
lower PHRR, decreased THE, and a lower EHC than resins
with only 2 or 3. In fact, the PHRR of the resins with 2b or 3b
are comparable to the resins loaded with 4 which showed the
strongest reduction of this value compared to the epoxy resin.
Resins with 3b had a 15% lower PHRR than resins with 3,
while resins with 2b or 3b demonstrated 8% or 11% lower
THE values and residue yields 47% or 49% higher than resins
with only 2 or 3, respectively. Consequently, the EHCs of
resins with 2b or 3b are 4% or 7% lower than resins with 2 or
3, respectively. Noticeably, the fire growth rate (FIGRA) of
resins with 2b are 20% lower than resins with 2. These results
clearly demonstrate that the presence of two types of P-FRs in
epoxy resins increases FR efficacy compared to a single P-FR
with the same O:N ratio. In the case of 2 and 3, the P−N
linkages retain the phosphorus in the condensed phase,
forming char during decomposition (Scheme 1, right path-
way). This retention of P in the char reduces flame inhibition
as P retention in the condensed phase competes with P release
in the gas phase.23

The residues after cone calorimeter tests were analyzed for
their phosphorus content via elemental analysis, indicating the
largest amount of P (80%) in the condensed phase for resins
loaded with 1 (Figure 4a). The difference in gas and
condensed phase activity is explained by the different
decomposition mechanisms as discussed previously.

In epoxy resins, the phosphate (4) readily forms phosphoric
acid via cis-elimination and creates networks with aromatic
char in the condensed phase and is present at the main
decomposition step due to incorporation into the decompos-
ing matrix via esterification (Scheme 1). In contrast, the
phosphoramide (1) was hydrolyzed under these conditions.
However, 1 also generated polymeric compounds containing
phosphazene or phosphorus oxynitride components in the
condensed phase, as indicated by solid-state NMR (Figure
S46), leading to an increased residue and high P content in the
char. The phosphoramidate (3) and phosphorodiamidate (2),
containing both P−O and P−N bonds, exhibit both
decomposition mechanisms with decreasing cis-elimination
when the P−N content increases and transesterification
(compare the pyrolysis GC-MS data).
The effect of combining phosphate and amide led to

synergistic flame-retardant effects, which were not observed for
the combination of P−O and P−N in a single FR additive. The
exchange of P−O bonds with P−N bonds reduced the
effectiveness of one mechanism but did not sufficiently
promote the other. This conclusion was exemplified in the
amount of residue in cone calorimeter tests as well as the P
content of the residue (Figure 4a): the residue amounts in
epoxy resins were ordered 4 ≥ 2 > 1 > 3 (i.e., 9.2% ≥ 5.0% >
8.4% > 7.6%) and 2b > 3b > 4 > 1 (i.e., 13.4% > 11.3% > 9.2%
> 8.4%) for the blended materials, showing an increase in
residue for the blended FRs. As for P content in the condensed
phase, the amidate (3) and diamidate (2) showed lower

Scheme 1. Scheme of Proposed Decomposition and Reaction Pathways of P−O- and P−N-Containing Phosphorus Flame
Retardantsa

aP−O containing P-FRs are more prone to cis-elimination, resulting in the formation of phosphoric acid and enabling transesterification reactions.
P−N-containing P-FRs are more to hydrolysis, resulting in the formation of phosphorus oxynitrides and phosphazenes. Products in squares were
identified via TG-FTIR and pyrolysis GC-MS.
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amounts of P in their residues (49% and 45%, respectively)
than the blended FRs 3b and 2b (61% and 56%, respectively).
The FTIR spectra of the evolved gases during the first

decomposition step (Figure 5) showed that the FRs
decompose above 200 °C, and some decomposition products
enter the gas phase, which is a typical behavior for low
molecular weight FRs.22 Looking at the main decomposition
step at around 360 °C (Figure S21), TG-FTIR showed the
DGEBA-DMC decomposition pattern,30 pointing to the
degradation of the resin matrix. An exception was the epoxy
resin with 4, where the phosphate still displayed characteristic
bands during the main decomposition step, implying the
presence of phosphate beyond the FR’s boiling point. This
phenomenon was caused by the reaction between matrix and
phosphate (Scheme 1), as the phosphate was more likely to
produce phosphoric acid than the nitrogen-containing counter-
parts due to the difference in bond dissociation energies,
leading to incorporation of phosphates into the polymer matrix
by transesterification.
Hot stage FTIR spectra (Figure S27) of the condensed

phase at various temperatures implied the presence of
phosphorus species in the residue (Table S3). All resins
containing FRs exhibited bands corresponding to various
phosphorus species at 600 °C, i.e., at end of the test. These
bands were not detected in the epoxy resin, indicating
condensed phase activity for all tested FRs. For 4, the presence
of medium intensity bands at 1181 cm−1, corresponding to C−
O stretching vibration of phenols, and at 828 cm−1,
corresponding to C−H bonds of aromatic rings, point to the
formation of substituted aromatic compounds in the
condensed phase. The band was strongest for 4, which points
to the ability of the phosphate to bind hydroxyl-functionalized
aromatic rings during the decomposition of the matrix into the
condensed phase. In contrast, all nitrogen-containing FRs (1−
3) demonstrated a medium intensity band at 1398 cm−1, which
corresponds to PN−P or P−N−Ph vibrations, which are
probably attributed to polyphosphazenes or phosphor oxy-
nitride in the condensed phase, as underlined by a higher

amount of residue after the TGA experiments for N-containing
FRs.

■ CONCLUSION
A systematic library of phosphorus-containing flame-retardant
(FR) additives (1−4) with precisely adjusted P/N/O ratio
were synthesized. Compounds 1−4 were less toxic than their
halogenated counterpart for most end points, and compounds
2 and 4 represented the best alternatives. With this library, the
decomposition pathway of the FRs in an epoxy resin during
combustion was controlled.
By a combination of different techniques, we were able to

elucidate the degradation mechanism of the different P-FRs
and proved a gradual change of the decomposition depending
on the chemical structure. In a simulated fire scenario, the
phosphate (4) exhibited the highest efficiency in epoxy resins
and was active in both the gas and the condensed phase
effectively. The gas phase activity was explained by the
predominant cis-elimination mechanism during the combus-
tion (from pyrolysis GC-MS). With an exchange of P−O
bonds with P−N bonds, the amount of cis-elimination
decreased and hydrolysis increased as a decomposition
pathway. The amide (1) with three P−N bonds proved the
highest condensed phase activity of the investigated structures
due to cleavage of the P−N bonds during the combustion.
This also resulted in the lowest FR performance of 1. Notably,
the blends of phosphate and phosphoramide (2b and 3b)
outperformed the pure 2 and 3. We believe this is an effect of
combining different decomposition mechanisms, which leads
to synergistic flame retardancy. These findings will further
contribute to the development of systematic libraries of P-
based FRs with low toxicity and high efficiency.

■ EXPERIMENTAL SECTION
Tri(hex-5-en-1-yl)phosphate (4). To a dried three-necked, 2 L

round-bottom flask fitted with a dropping funnel, 5-hexen-1-ol (274.2
mL, 2.28 mol, 3.5 equiv) and triethylamine (318.6 mL, 2.28 mol, 3.5
equiv) were added under an argon atmosphere in dry dichloro-
methane (500 mL). Then phosphoryl chloride (60.6 mL, 0.65 mol,

Figure 5. TG-FTIR spectra of the first decomposition step of flame-retarded epoxy resins.
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1.0 equiv) dissolved in dry dichloromethane (50 mL) was added
dropwise to the solution, keeping the temperature at 0 °C. The
reaction was allowed to stir overnight at room temperature and was
then filtered. Afterward, the crude mixture was concentrated at
reduced pressure, dissolved in toluene and then filtered to remove
most of the ammonium salt byproduct. Then, the crude product was
washed with 10% aqueous hydrochloric acid solution, a saturated
solution of calcium carbonate, and brine. The organic layer was dried
over anhydrous sodium sulfate, filtered, and dried in vacuo.
For the biological tests the compound 4 was purified by

chromatography over neutral alumina oxide using diethyl ether as
eluent to give a clear, slight yellow oil (yield: 95%). The purity and
chemical structure were determined by 1H NMR, 13C {H} NMR, and
31P {H} NMR spectroscopy as well as electrospray ionization mass
spectrometry (ESI-MS).

1H NMR (300 MHz, chloroform-d, δ): 5.83−5.70 (m, 3H, e),
5.02−4.93 (m, 6H, f), 4.02 (q, 6H, a), 2.10−2.03 (td, 6H, d), 1.68 (tt,
6H, b), 1.46 (tt, 6H, c). 31P {H} NMR (121 MHz, chloroform-d, δ):
−0.67 (s, 1P, 1). 13C {H} NMR (75 MHz, chloroform-d, δ): 138.17
(s, 3C, e), 114.85 (s, 3C, f), 67.38 (d, 3C, a), 33.11 (s, 3C, d), 29.60
(d, 3C, b), 24.67 (s, 3C, c). ESI-MS: 345.21 [M + H]+ (calculated M
+: 344.21).
Tri(hex-5-en-1-yl)phosphoramide (1). To a dried three-necked,

2 L round-bottom flask fitted with a dropping funnel, hex-5-en-1-
amine (286.2 mL, 2.28 mol, 3.5 equiv) and triethylamine (318.6 mL,
2.28 mol, 3.5 equiv) were added under an argon atmosphere in dry
dichloromethane (500 mL). Then, phosphoryl chloride (60.6 mL,
0.65 mol, 1.0 equiv) dissolved in dry dichloromethane (50 mL) was
added dropwise to the solution, keeping the temperature at 0 °C. The
reaction was allowed to stir overnight at room temperature and was
then filtered. Afterward, the crude mixture was concentrated at
reduced pressure and then filtered for the second time. The crude
product was redissolved in diethyl ether (200 mL) and stored
overnight at −20 °C. The solution was filtered again to remove the
triethylamine hydrochloride completely. The crude product was
washed with 10% aqueous hydrochloric acid solution, a saturated
solution of calcium carbonate, and brine. The organic layer was dried
over anhydrous sodium sulfate, filtered, and dried in vacuo.
For the biological tests the compound 1 was purified by

chromatography over silica using DCM and methanol (9:1) as eluent
to give a clear, slight yellow oil (yield: 92%). The purity and chemical
structure were determined by 1H NMR, 13C {H} NMR, and 31P {H}
NMR spectroscopy as well as electrospray ionization mass
spectrometry (ESI-MS).

1H NMR (300 MHz, chloroform-d, δ): 5.81−5.68 (m, 3H, e),
4.98−4.89 (m, 6H, f), 2.85 (quint, 6H, a), 2.36−2.29 (q, 3H, g),
2.05−1.98 (td, 6H, d), 1.48−1.34 (m, 12H, b, c). 31P {H} NMR (121
MHz, chloroform-d, δ): 16.67 (s, 1P, 1). 13C {H} NMR (75 MHz,
chloroform-d, δ): 138.50 (s, 3C, e), 114.67 (s, 3C, f), 41.09 (s, 3C, a),
33.39 (s, 3C, d), 31.69 (d, 3C, b), 26.09 (s, 3C, c). ESI-MS: 342.24
[M + H]+, 683.44 [2M + H]+) (calculated: 341.26).
Hex-5-en-1-yl Phosphorodichloridate. To a dried three-

necked, 250 mL round-bottom flask fitted with a dropping funnel,
phosphoryl chloride (18.7 mL, 205.00 mmol, 10.0 equiv) was added
under an argon atmosphere in dry toluene (50 mL). Then
triethylamine (2.8 mL, 20.50 mmol, 1.0 equiv) and 5-hexen-1-ol
(2.5 mL, 20.50 mmol, 1.0 equiv) dissolved in dry toluene (5 mL)
were added dropwise to the solution, keeping the temperature at 0 °C.
The reaction was stirred 1 h at room temperature. Afterward, the
crude product was concentrated at reduced pressure and filtered to
remove the triethylammonium chloride. Then, all byproducts and
starting material were removed under reduced pressure (RT, 5 × 10−2

mbar). The product was used without any further purification.
Di(hex-5-en-1-yl)phosphorochloridate. To a dried three-

necked 250 mL round-bottom flask fitted with a dropping funnel,
phosphoryl chloride (8.1 mL, 88.89 mmol, 1.0 equiv) was added
under an argon atmosphere in dry toluene (80 mL). Then
triethylamine (22.2 mL, 160.00 mmol, 1.8 equiv) and 5-hexen-1-ol
(19.2 mL, 160.00 mmol, 1.8 equiv) dissolved in dry toluene (20 mL)
were dropwise to the solution, keeping the temperature at 0 °C. The

reaction was allowed to stir overnight at room temperature and was
then filtered. Afterward, the crude mixture was concentrated at
reduced pressure.

The compound was purified by distillation (90 °C, <10−1 mbar 30
min; 110 °C, <10−1 mbar 15−20 min) to give a clear, slight yellow oil
(yield: 82%). The purity and chemical structure were determined by
1H NMR and 31P {H} NMR spectroscopy.

1H NMR (300 MHz, chloroform-d, δ): 5.78−5.65 (m, 2H, e),
4.98−4.89 (m, 4H, f), 4.21−1.09 (m, 4H, a), 2.02 (td, 4H, d), 1.69
(tt, 4H, b), 1.45 (tt, 4H, c). 31P {H} NMR (121 MHz, chloroform-d,
δ): 4.73 (s, 1P, 1).

Tri(hex-5-en-1-yl)phosphorodiamidate (2). To a dried three-
necked 250 mL round-bottom flask fitted with a dropping funnel, hex-
5-en-1-yl phosphorodichloridate (4.5 g, 20.50 mmol, 1.0 equiv) was
added under an argon atmosphere in dry toluene (50 mL). Then hex-
5-en-1-amine (5.4 mL, 43.05 mmol, 2.1 equiv) and triethylamine (6.0
mL, 43.05 mmol, 2.1 equiv) were added dropwise to the solution,
keeping the temperature at 0 °C. The reaction was allowed to stir
overnight at room temperature and was then filtered. The crude
mixture was concentrated at reduced pressure, and the crude product
was dissolved in diethyl ether to wash it with 10% aqueous
hydrochloric acid solution, a saturated solution of calcium carbonate,
and brine. The organic layer was dried over anhydrous sodium sulfate,
filtered, and concentrated on the rotary evaporator.

For the biological tests the compound 2 was purified by
chromatography over silica using ethyl acetate, petroleum ether, and
methanol (9:1:0.1) as eluent to give a clear, slight yellow oil (yield:
95%). The purity and chemical structure were determined by 1H
NMR, 13C {H} NMR, and 31P {H} NMR spectroscopy as well as
electrospray ionization mass spectrometry (ESI-MS).

1H NMR (300 MHz, chloroform-d, δ): 5.76−5.63 (m, 3H, f, l),
4.94−4.84 (m, 6H, g, m), 3.83 (q, 2H, h), 2.78 (q, 4H, b), 2.61 (br,
2H, a), 1.98 (m, 6H, e, k), 1.57 (m, 2H, (i), 1.44−1.29 (m, 6H, c, d,
j). 31P {H} NMR (121 MHz, chloroform-d, δ): 15.81 (s, 1P, 1). 13C
{H} NMR (75 MHz, chloroform-d, δ): 138.44 (s, 2C, f), 138.36 (s,
C, l), 114.73 (s, C, m), 114.65 (s, 2C, g), 64.61 (d, C, h), 41.01 (s,
2C, b), 33.32 (s, 2C, e), 33.25 (s, C, k), 31.43 (d, 2C, c), 29.99 (d, C,
(i), 25.96 (s, 2C, d), 24.97 (s, C, j). ESI-MS m/z: 343.24 [M + H]+,
685.42 [2M + H]+ (calculated: 342.24).

Tri(hex-5-en-1-yl)phosphoramidate (3). To a dried three-
necked 250 mL round-bottom flask fitted with a dropping funnel,
di(hex-5-en-1-yl)phosphorochloridate (25.0 g, 88.9 mmol, 1.0 equiv)
was added under an argon atmosphere in dry toluene (80 mL). Then
triethylamine (13.6 mL, 97.78 mmol, 1.1 equiv) and 1-hexene-5-
amine (12.3 mL, 97.78 mmol, 1.1 equiv) were added dropwise to the
solution at room temperature. The reaction was stirred overnight and
filtered. The crude mixture was concentrated at reduced pressure, and
the crude product was dissolved in diethyl ether to wash it with 10%
aqueous hydrochloric acid solution, a saturated solution of calcium
carbonate, and brine. The organic layer was dried over anhydrous
sodium sulfate, filtered, and dried in vacuo.

For the biological tests the compound was purified by
chromatography over silica using ethyl acetate and petroleum ether
(6:4) as an eluent to give a clear, slight yellow oil (yield: 63%). The
purity and chemical structure were determined by 1H NMR, 13C {H}
NMR, and 31P {H} NMR spectroscopy.

1H NMR (300 MHz, chloroform-d, δ): 5.83−5.69 (m, 3H, e, l),
5.01−4.91 (m, 6H, f, m), 3.95 (m, 4H, a), 2.70 (br, H, g), 2.85 (br,
2H, h), 2.04 (td, 6H, d, k), 1.66 (m, 4H, b), 1.50−1.35 (m, 8H, c, i, j).
31P {H} NMR (121 MHz, chloroform-d, δ): 9.48 (s, 1P, 1). 13C {H}
NMR (75 MHz, chloroform-d, δ): 138.47 (s, C, l), 138.41 (s, 2C, e),
114.87 (s, 2C, f), 114.81 (s, C, m), 66.06 (d, 2C, a), 41.33 (s, C, h),
33.37 (s, C, k), 33.29 (s, 2C, d), 31.21 (d, C, (i), 29.90 (d, 2C, b),
25.92 (s, C, j), 24.95 (s, 2C; c). ASAP-MS m/z: 689.2 (2M + H)
(calculated: 344.21).
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William Harris and Letićia Lima for their assistance in
measuring and preparing samples. L.Z. and F.R.W. thank the
German Federal Ministry for Education and Research (BMBF)
for their support of the program “Research for sustainable
development (FONA)”, “PlastX-Plastics as a systemic risk for
social-ecological supply systems” (Grant 01UU1603A).

■ REFERENCES
(1) Velencoso, M. M.; Battig, A.; Markwart, J. C.; Schartel, B.;
Wurm, F. R. Molecular Firefighting - How Modern Phosphorus
Chemistry Can Help Solve the Flame Retardancy Task. Angew. Chem.,
Int. Ed. 2018, 57 (33), 10450.
(2) Nishihara, H.; Tanji, S.; Kanatani, R. Interactions between
Phosphorus- and Nitrogen-Containing Flame Retardants. Polym. J.
1998, 30, 163.
(3) Lindsay, C. I.; Hill, S. B.; Hearn, M.; Manton, G.; Everall, N.;
Bunn, A.; Heron, J.; Fletcher, I. Mechanisms of action of phosphorus
based flame retardants in acrylic polymers. Polym. Int. 2000, 49 (10),
1183−1192.
(4) Schartel, B. Phosphorus-based Flame Retardancy Mechanisms
Old Hat or a Starting Point for Future Development? Materials 2010,
3 (10), 4710−4745.
(5) Green, J. A Review of Phosphorus-Containing Flame Retardants.
J. Fire Sci. 1992, 10 (6), 470−487.
(6) Braun, U.; Balabanovich, A. I.; Schartel, B.; Knoll, U.; Artner, J.;
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