Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Sturm bounds for Siegel modular forms of degree 2 and odd weights

MPG-Autoren
/persons/resource/persons236303

Takemori,  Sho
Max Planck Institute for Mathematics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

arXiv:1508.01610.pdf
(Preprint), 207KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kikuta, T., & Takemori, S. (2019). Sturm bounds for Siegel modular forms of degree 2 and odd weights. Mathematische Zeitschrift, 291(3-4), 1419-1434. doi:10.1007/s00209-018-2213-z.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-76A4-E
Zusammenfassung
We correct the proof of the theorem in the previous paper presented by Kikuta, which concerns Sturm bounds for Siegel modular forms of degree $2$ and of even weights modulo a prime number dividing $2\cdot 3$. We give also Sturm bounds for them of odd weights for any prime numbers, and we
prove their sharpness. The results cover the case where Fourier coefficients are algebraic numbers.