English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Disentangled behavioural representations

MPS-Authors
/persons/resource/persons217460

Dayan,  P
Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Dezfouli, A., Ashtiani, H., Ghattas, O., Nock, R., Dayan, P., & Ong, C. (2020). Disentangled behavioural representations. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 32 (pp. 2243-2252). Red Hook, NY, USA: Curran.


Cite as: https://hdl.handle.net/21.11116/0000-0004-A121-0
Abstract
Individual characteristics in human decision-making are often quantified by fitting a parametric cognitive model to subjects' behavior and then studying differences between them in the associated parameter space. However, these models often fit behavior more poorly than recurrent neural networks (RNNs), which are more flexible and make fewer assumptions about the underlying decision-making processes. Unfortunately, the parameter and latent activity spaces of RNNs are generally high-dimensional and uninterpretable, making it hard to use them to study individual differences. Here, we show how to benefit from the flexibility of RNNs while representing individual differences in a low-dimensional and interpretable space. To achieve this, we propose a novel end-to-end learning framework in which an encoder is trained to map the behavior of subjects into a low-dimensional latent space. These low-dimensional representations are used to generate the parameters of individual RNNs corresponding to the decision-making process of each subject. We introduce terms into the loss function that ensure that the latent dimensions are informative and disentangled, i.e., encouraged to have distinct effects on behavior. This allows them to align with separate facets of individual differences. We illustrate the performance of our framework on synthetic data as well as a dataset including the behavior of patients with psychiatric disorders.