English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

State-dependent effects of transcranial oscillatory currents on the motor system during action observation

MPS-Authors
/persons/resource/persons201758

Nikulin,  Vadim V.
Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia;
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Feurra_2019.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Feurra, M., Blagoveshchensky, E., Nikulin, V. V., Nazarova, M., Lebedeva, A., Pozdeeva, D., et al. (2019). State-dependent effects of transcranial oscillatory currents on the motor system during action observation. Scientific Reports, 9: 12858. doi:10.1038/s41598-019-49166-1.


Cite as: https://hdl.handle.net/21.11116/0000-0004-A5BE-C
Abstract
We applied transcranial alternating current stimulation (tACS) to the primary motor cortex (M1) at different frequencies during an index–thumb pinch-grip observation task. To estimate changes in the corticospinal output, we used the size of motor evoked potentials (MEPs) obtained by transcranial magnetic stimulation (TMS) of M1 using an online MRI-guided simultaneous TMS-tACS approach. The results of the beta-tACS confirm a non-selective increase in corticospinal excitability in subjects at rest; an increase was observed for both of the tested hand muscles, the first dorsal interosseous (FDI) and the abductor digiti minimi (ADM). However, during action observation of the pinch-grip movement, the increase of corticospinal excitability was only observed for the prime mover FDI muscle and took place during alpha-tACS, while gamma-tACS affected both the FDI and control muscle (ADM) responses. These phenomena likely reflect the hypothesis that the mu and gamma rhythms specifically index the downstream modulation of primary sensorimotor areas by engaging mirror neuron activity. The current neuromodulation approach confirms that tACS can be used to induce neurophysiologically detectable state-dependent enhancement effects, even in complex motor-cognitive tasks.