Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Hochschulschrift

Obesity is associated with insufficientbehavioral adaptation

MPG-Autoren
/persons/resource/persons22901

Mathar,  David
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mathar, D. (2018). Obesity is associated with insufficientbehavioral adaptation. PhD Thesis, Faculty of Medicine, University of Leipzig, Germany.


Zitierlink: https://hdl.handle.net/21.11116/0000-0004-C0B4-7
Zusammenfassung
Obesity is one of the major health concerns nowadays according to the World Health Organisation (WHO global status report on noncommunicable diseases 2010). Thus, there is an urgent need for understanding obesity-associated alterations in food-related and general cognition and their underlying structural and functional correlates within the central nervous system (CNS). Neuroscientific research of the past decade has mainly focussed on obesity-related differences within homeostatic and hedonic processing of food stimuli. Therein, alterations during anticipation and consumption of food-reward stimuli in obese compared with lean subjects have been highlighted. This points at an altered adaptation of eating behavior in obese individuals. This thesis investigates if adaptation of behavior is attenuated in obese compared to lean individuals in learning-related processes beyond the food domain. In five consecutive experimental studies, we show that obese participants reveal reduced adaptation of behavior within and outside the food context. With the help of MRI, we relate these behavioral findings to alterations in structure and function of the fronto-striatal dopaminergic system in obesity. In more detail, reduced behavioral adaptation seems to be associated with attenuated utilization of negative prediction errors in obese individuals. Within the brain, this relates to reduced functional coupling between subcortical dopaminergic target regions (ventral striatum) and executive cortical structures (supplementary motor area) in obesity, as revealed by fMRI analysis.