Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Exploring and mapping the universe of evolutionary graphs identifies structural properties affecting fixation probability and time

MPG-Autoren
/persons/resource/persons238286

Möller,  Marius
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons118330

Hindersin,  Laura
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56973

Traulsen,  Arne
Department Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Möller_CommBio_2019.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Möller, M., Hindersin, L., & Traulsen, A. (2019). Exploring and mapping the universe of evolutionary graphs identifies structural properties affecting fixation probability and time. Communications Biology, 2: 137. doi:10.1038/s42003-019-0374-x.


Zitierlink: https://hdl.handle.net/21.11116/0000-0003-A45F-A
Zusammenfassung
Population structure can be modeled by evolutionary graphs, which can have a substantial influence on the fate of mutants. Individuals are located on the nodes of these graphs, competing to take over the graph via the links. Applications for this framework range from the ecology of river systems and cancer initiation in colonic crypts to biotechnological search for optimal mutations. In all these applications, both the probability of fixation and the associated time are of interest. We study this problem for all undirected and unweighted graphs up to a certain size. We devise a genetic algorithm to find graphs with high or low fixation probability and short or long fixation time and study their structure searching for common themes. Our work unravels structural properties that maximize or minimize fixation probability and time, which allows us to contribute to a first map of the universe of evolutionary graphs.